Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleBRAIN

Improved Image Quality of Intracranial Aneurysms: 3.0-T versus 1.5-T Time-of-Flight MR Angiography

Gordon F. Gibbs, John Huston, Matt A. Bernstein, Stephen J. Riederer and Robert D. Brown
American Journal of Neuroradiology January 2004, 25 (1) 84-87;
Gordon F. Gibbs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Huston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matt A. Bernstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen J. Riederer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert D. Brown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: We hypothesize that the nearly doubling of signal-to-noise ratio at 3.0 T compared with that at 1.5 T yields improved clinical MR angiograms and enables superior visualization of intracranial aneurysms. The goal of this study was to determine whether 3.0-T time-of-flight (TOF) MR angiography is superior to 1.5-T TOF MR angiography in the detection and characterization of intracranial aneurysms.

METHODS: Fifty consecutive patients referred for MR angiography of a known or suspected intracranial aneurysm underwent 3-T TOF MR angiography. Seventeen of these 50 patients had also previously undergone 1.5-T TOF MR angiography and these images were used as a basis for comparison with images obtained at 3.0 T. Fourteen of 23 patients in whom aneurysms were identified also underwent prior conventional angiography, which was used as the reference standard. Readers blinded to patient history identified the presence and location of aneurysm(s) on angiograms and graded images for overall image quality by using a five-point scale.

RESULTS: Twenty-eight aneurysms were identified in 23 of 50 patients. Seventeen aneurysms in 17 patients had been documented with 1.5-T MR angiography. The 3.0-T technique had a higher mean image quality score than that of the 1.5-T MR technique (P < .0001). Both 3.0-T and 1.5-T TOF MR angiography depicted all the aneurysms that had been documented by conventional angiography.

CONCLUSION: 3D TOF MR angiography at 3 T offers superior depiction of intracranial aneurysms compared with that of 1.5-T TOF MR angiography.

  • Copyright © American Society of Neuroradiology
View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 25 (1)
American Journal of Neuroradiology
Vol. 25, Issue 1
1 Jan 2004
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improved Image Quality of Intracranial Aneurysms: 3.0-T versus 1.5-T Time-of-Flight MR Angiography
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Gordon F. Gibbs, John Huston, Matt A. Bernstein, Stephen J. Riederer, Robert D. Brown
Improved Image Quality of Intracranial Aneurysms: 3.0-T versus 1.5-T Time-of-Flight MR Angiography
American Journal of Neuroradiology Jan 2004, 25 (1) 84-87;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Improved Image Quality of Intracranial Aneurysms: 3.0-T versus 1.5-T Time-of-Flight MR Angiography
Gordon F. Gibbs, John Huston, Matt A. Bernstein, Stephen J. Riederer, Robert D. Brown
American Journal of Neuroradiology Jan 2004, 25 (1) 84-87;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Visualization of Intracranial Aneurysms Treated with Woven EndoBridge Devices Using Ultrashort TE MR Imaging
  • Surveillance of Unruptured Intracranial Saccular Aneurysms Using Noncontrast 3D-Black-Blood MRI: Comparison of 3D-TOF and Contrast-Enhanced MRA with 3D-DSA
  • Risk Factors Associated With the Presence of Unruptured Intracranial Aneurysms
  • Extended Follow-Up of Unruptured Intracranial Aneurysms Detected by Presymptomatic Screening in Patients with Autosomal Dominant Polycystic Kidney Disease
  • A Prospective Trial of 3T and 1.5T Time-of-Flight and Contrast-Enhanced MR Angiography in the Follow-Up of Coiled Intracranial Aneurysms
  • Evaluation of the Occlusion Status of Coiled Intracranial Aneurysms with MR Angiography at 3T: Is Contrast Enhancement Necessary?
  • Intracranial Aneurysm Enlargement on Serial Magnetic Resonance Angiography: Frequency and Risk Factors
  • High-Resolution 3T MR Angiography of the Carotid Arteries: Comparison of Manual and Semiautomated Quantification of Stenosis
  • Genomewide Linkage in a Large Dutch Family With Intracranial Aneurysms: Replication of 2 Loci for Intracranial Aneurysms to Chromosome 1p36.11-p36.13 and Xp22.2-p22.32
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire