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ORIGINAL RESEARCH
BRAIN

Automated White Matter Total Lesion Volume
Segmentation in Diabetes

J.A. Maldjian, C.T. Whitlow, B.N. Saha, G. Kota, C. Vandergriff, E.M. Davenport, J. Divers, B.I. Freedman, and D.W. Bowden

ABSTRACT

BACKGROUND AND PURPOSE: WM lesion segmentation is often performed with the use of subjective rating scales because manual
methods are laborious and tedious; however, automated methods are now available. We compared the performance of total lesion
volume grading computed by use of an automated WM lesion segmentation algorithm with that of subjective rating scales and expert
manual segmentation in a cohort of subjects with type 2 diabetes.

MATERIALS AND METHODS: Structural T1 and FLAIR MR imaging data from 50 subjects with diabetes (age, 67.7 � 7.2 years) and 50
nondiabetic sibling pairs (age, 67.5 � 9.4 years) were evaluated in an institutional review board–approved study. WM lesion segmentation
maps and total lesion volume were generated for each subject by means of the Statistical Parametric Mapping (SPM8) Lesion Segmentation
Toolbox. Subjective WM lesion grade was determined by means of a 0 –9 rating scale by 2 readers. Ground-truth total lesion volume was
determined by means of manual segmentation by experienced readers. Correlation analyses compared manual segmentation total lesion
volume with automated and subjective evaluation methods.

RESULTS: Correlation between average lesion segmentation and ground-truth total lesion volume was 0.84. Maximum correlation be-
tween the Lesion Segmentation Toolbox and ground-truth total lesion volume (� � 0.87) occurred at the segmentation threshold of k �

0.25, whereas maximum correlation between subjective lesion segmentation and the Lesion Segmentation Toolbox (� � 0.73) occurred at
k � 0.15. The difference between the 2 correlation estimates with ground-truth was not statistically significant. The lower segmentation
threshold (0.15 versus 0.25) suggests that subjective raters overestimate WM lesion burden.

CONCLUSIONS: We validate the Lesion Segmentation Toolbox for determining total lesion volume in diabetes-enriched populations
and compare it with a common subjective WM lesion rating scale. The Lesion Segmentation Toolbox is a readily available substitute for
subjective WM lesion scoring in studies of diabetes and other populations with changes of leukoaraiosis.

ABBREVIATIONS: DM � type 2 diabetes mellitus; LST � Lesion Segmentation Toolbox; SPM8 � Statistical Parametric Mapping; TLV � total lesion volume; GT �
ground-truth

Leukoariaosis is a common WM pathologic lesion in older

adults, characterized histologically by demyelination, loss of

oligodendrocytes, and vacuolization resulting from small-vessel

ischemia of the WM.1 On brain MR imaging, these lesions are

commonly termed WM hyperintensities and appear as regions of

increased signal on T2-weighted and FLAIR sequences. Increases

in WM disease burden have been associated with risk factors, such

as hypertension, type 2 diabetes mellitus (DM), and tobacco use.2

Quantifying WM disease burden in the brain is important because

it is an accurate and sensitive predictor of future stroke, dementia,

and cognitive decline.3-6

Clinical evaluation of WM disease has been limited to subjec-

tive interpretation of disease burden, with typical modifiers in-

cluding “few scattered lesions” and “mild,” “moderate,” or “se-

vere” applied in radiologic reporting. This is because of the

onerous and time-consuming task of manual delineation of WM

lesion burden and the lack of robust automated tools for quanti-

tative WM lesion grading. A semi-quantitative visual rating

scheme was developed for use with large epidemiologic studies
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involving brain MR imaging. This WM hyperintensity grading

scale is commonly used for research studies and is based on visual

assessment by an experienced reader with the use of a semi-quan-

titative 10-point (0 –9) scale with predefined methodology.7,8

A variety of automated methods for WM lesion quantification,

involving combinations of thresholding, segmentation, prior in-

formation, lesion growing algorithms, and, most recently, ma-

chine learning algorithms, have been used in research studies of

multiple sclerosis. It is beyond the scope of this work to describe

all the developments in WM lesion segmentation. Rather, we focus

on a recently described software tool for automated WM lesion seg-

mentation, the Lesion Segmentation Toolbox (LST); it was devel-

oped for use in the Statistical Parametric Mapping (SPM8) environ-

ment, which is familiar to most neuroimaging researchers, is freely

distributed open source code written in Matlab (MathWorks,

Natick, Massachusetts), and is easily implemented/fully automated.

Additionally, the LST uses widely available structural T1-weighted

and FLAIR images for performing WM lesion segmentation. The

LST was developed for use in multiple sclerosis and originally evalu-

ated in a group of 52 subjects with multiple sclerosis and 18 control

subjects, achieving excellent agreement with manual tracing (R2 val-

ues of 0.93).9 A critical user-determined parameter in the LST pro-

cedure is the k-threshold, which was determined to be 0.3 in a mul-

tiple sclerosis population.

The purpose of our study is to compare the performance of

total lesion volume (TLV) grading computed by means of the LST

automated WM lesion segmentation algorithm to expert manual

segmentation in a cohort of subjects with DM and to determine

the optimum k-threshold in this population. A secondary objec-

tive is to compare the LST TLV with semi-quantitative subjective

rating scales. Our hypothesis is that TLV computed with the LST

will perform at least as well as subjective rating scales when com-

pared with ground-truth (GT) TLV in DM. This report answers

the important question of whether an automated toolbox devel-

oped for use in multiple sclerosis can be used reliably for grading

WM lesion burden in populations with a different pathophysio-

logic mechanism for development of WM disease.

MATERIALS AND METHODS
Subjects
The Diabetes Heart Study is a genetic and epidemiologic study of

1443 European American and African American participants from

564 families with multiple cases of DM.10,11 The Diabetes Heart

Study–Mind is an extension of the Diabetes Heart Study family of

studies and examines the genetic and brain imaging contributors to

cognitive changes associated with DM. The study includes diabetes-

and nondiabetes-affected siblings. All subjects provided written in-

formed consent, and study protocols were approved by the blinded

institutional review board. MR imaging studies from 100 subjects

were randomly selected from the Diabetes Heart Study-Mind. These

included 50 subjects with DM (27 women, 23 men), 52% smokers,

mean � standard deviation (SD) age of 67.7 � 7.2 (age range, 52–84

years), body mass index of 32.3 � 7.1, and hemoglobin A1C of 7.6 �

1.48; and 50 siblings without DM (35 women, 15 men), 46% smok-

ers, mean�SD age of 67.5�9.4 (age range, 43–89 years), body mass

index of 28.5 � 6.5, and hemoglobin A1C of 5.9 � 0.31.

MR Imaging
Participants from the Diabetes Heart Study-Mind were scanned

on a 1.5T scanner with twin-speed gradients, with the use of an

8-channel neurovascular head coil Twin Speed EXCITE; GE

Healthcare, Milwaukee, Wisconsin. High-resolution T1 anatomic

images were obtained by means of a 3D spoiled gradient-echo se-

quence (matrix, 256 � 256; field of view, 20 cm; section thickness, 1.5

mm with no gap; number of sections, 124; in-plane resolution,

0.781 � 0.781 mm) aligned parallel to the anterior/posterior com-

missures (anterior/posterior commisure line). FLAIR images were

acquired in the axial plane for the purpose of evaluating WM hyper-

intensities (TR�8002, TE�108.5, TI�2000, flip angle�90, 24 cm

FOV, matrix size � 256 � 256 [0.94 � 0.94 mm], 3-mm section

thickness).

Semi-Quantitative WM Rating Scale
WM hyperintensity signal changes of each individual were as-

sessed independently by 2 board-certified neuroradiologists by

means of a semi-quantitative 10-point (0 –9) scale with pre-

defined methodology.7,8 WM hyperintensity burden was esti-

mated as the total extent of periventricular and subcortical white

matter FLAIR signal hyperintensity that successively increases

from no or barely detectable changes (grades 0 and 1, respectively)

to almost all WM involved (grade 9). This scale has an inter-

reader reliability agreement within 1 grade of 85.7%, with relaxed

� of 0.8, and intrareader reliability for agreement within 1 grade of

96.9%, with relaxed � of 0.96.8

Image Preprocessing
The structural T1-weighted images were segmented into gray

matter, WM, and CSF, normalized to Montreal Neurological In-

stitute imaging space, and modulated with the Jacobian determi-

nants of the normalization procedure to obtain tissue volume

maps by use of the Dartel high-dimensional warping and the

SPM8 (Wellcome Department of Imaging Neuroscience, Lon-

don, UK)12 new segment procedure, as implemented in the

VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html). In ad-

dition to normalized images in Montreal Neurological Institute

imaging space, the procedure outputs native space segmentations

and a native space partial volume estimate label image of the most

likely tissue class for each voxel. The quality of the segmentation

and normalization for all subjects was confirmed by visual

inspection.

WM Lesion Segmentation
WM lesion segmentation and TLV maps were generated by use of

the LST9 for SPM8 at 20 thresholds (k), ranging from 0 –1 at 0.05

increments. The algorithm operates in native space and initially

coregisters the FLAIR images to the space of the native T1. Each

voxel in the T1 image is assigned to 1 of 3 classes (gray matter,

WM, CSF) by use of the VBM8 toolbox as described above (partial

volume estimate label map in native space). The FLAIR intensity

distribution is calculated for each of the 3 classes to determine

outliers, weighted according to the spatial probability of being

WM, resulting in 3 classes of belief maps, and summed to

generate a single belief map. A binarized version of the gray

matter lesion map is used to seed a region growing algorithm
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with the summed belief map as the target. The user-selected

k-threshold is used as the cutoff to generate the initial gray

matter seed binarized belief map. The algorithm outputs WM

lesion segmentations for each k threshold, as well as a table of

total lesion volume (20 TLV values corresponding to each of

the 20 k-thresholds).

GT Segmentation
A multi-tiered approach was used to generate the reference GT

lesion volume segmentation. All stages involved expert manual

segmentation by board-certified neuroradiologists. Two raters

(each with 1–2 years of neuroradiology experience) initially man-

ually segmented all the white matter lesions independently by use

of in-house software. This generated 2 independent lesion volume

datasets. The 2 datasets were merged by use of a binary union

procedure to generate a single dataset representing the combina-

tion of all lesions identified by both raters. Two highly experi-

enced neuroradiologists (with �15 years and �3 years of experi-

ence, respectively) then together performed a consensus reading,

reviewing all lesions in the combination dataset. The consensus

reading session was performed by use of MRIcron (http://

www.sph.sc.edu/comd/rorden/mricro.html)13 with direct over-

lay onto the original FLAIR images and included the ability to

manually add, remove, and edit the borders of all lesions. This

final consensus lesion volume dataset served as the GT for the

study.

Statistical Analysis
Correlation and regression analyses were performed for 3 main

comparisons: subjective WM lesion scores versus GT, LST versus

GT for each k-threshold, and subjective WM lesion scores versus

LST for each k threshold. These analyses were repeated by use of

log (TLV) to account for nonlinearity in the relationship between

TLV and subjective scores. The optimum k-threshold was deter-

mined as that providing the maximum correlation value com-

pared with manual segmentation. Between-group and inter-

reader comparisons were also performed for the subjective WM

scores and correlations with GT. Fisher r-to-z transformation14

was used to test whether observed correlations were statistically

different from zero. Steiger Z-test of correlated correlations15 was

used to determine if there was a significant difference in correla-

tion values between subjective rating with GT and LST with GT.

Bland-Altman plots were also computed between LST versus GT

and LST versus subjective WM lesion scores to determine the

mean difference between methods.

RESULTS
Subjective WM Lesion Scores
Mean WM score for the group was 2.0, with an SD of 1.5. The

distribution of WM scores ranged from 0 –7, with most values

falling in the lower range of 0 –3 (On-line Fig 1). Between-reader

agreement was 88% within 1 grade, similar to that reported in the

literature for this method.8 There was no statistically significant

difference in subjective WM scores between groups, with mean �

SD of 2.0 � 1.3 for DM-affected and 2.0 � 1.6 for non-DM

groups.

Subjective WM Lesion Scores Versus GT
The Pearson correlation between average WM scores and GT was

0.84, with reader 1 having a correlation of 0.79 and reader 2 a

correlation of 0.82. The correlation between average WM scores

and GT was 0.82 and 0.85 for DM-affected and non-DM

groups, respectively. With the use of the logarithm of GT, the

correlations with average WM scores improved to 0.85 for the

entire cohort (0.77 for reader 1 and 0.86 for reader 2) and 0.845

for the DM-affected group and 0.86 for the non-DM group. All

reported correlation values were statistically significant (P �

.0001).

LST Versus GT
On-line Fig 2 is a graph of the LST k-threshold versus correlation

with GT for the entire cohort. Correlation values ranged from

0.62– 0.81 for the thresholds considered. Maximum correlation

for the full sample was 0.87, corresponding to k � 0.25. For the

non-DM group, maximum correlation was 0.94 observed at k �

0.15. For the DM-affected group, the maximum correlation was

0.83, corresponding to k � 0.25. The GT correlation performance

of the LST was not significantly different from subjective WM

scores (Steiger Z � 0.8, P � .4 for raw GT and Z � 1.4, P � .15 for

the log-transformed data).

LST Versus Subjective WM Lesion Scores
Correlation values ranged from 0.59 – 0.65 for the threshold val-

ues considered. Maximum correlation was 0.74, which was ob-

served when k � 0.15 in the full sample (On-line Fig 2). For the

non-DM group, maximum correlation was 0.76, which was ob-

served at the same threshold of k � 0.15. For the DM-affected

group, maximum correlation was 0.74, corresponding to a

k-threshold of 0.2. The threshold value of 0.25 provided correla-

tions of 0.73, 0.74, and 0.74 for the full sample, the non-DM

group, and the DM-affected group, respectively. Correlation val-

ues were similar with the use of log-transformed values.

GT Manual Segmentation
Paired Spearman correlation between manual segmentation rat-

ers, the final consensus GT volume, and the LST were all very high

(� � 0.91 between first and second rater, � � 0.96 between first

rater and GT, � � 0.98 between second rater and GT, � � 0.92

between first rater and LST, � � 0.8 between second rater and

LST, and � � 0.87 between GT and LST), with P � .001 for all

comparisons. Although the inter-rater correlations for manual

segmentation were high, mean � SD (median) of lesion volumes

reported in units of milliliters were more widely spaced between

raters: GT and LST with 2.43 � 3.97 (0.86) for rater 1, 3.65 � 5.69

(1.2) for rater 2, 4.47 � 6.48 (1.83) for GT, and 2.45 � 4.59 (0.38)

for the LST, which suggests high inter-rater variability. The GT

mean � SD TLV for the full sample was 4.47 � 6.48. The distri-

bution of WM TLV was heavily skewed toward values �1 mL

(On-line Fig 3), with a minor secondary peak at 10 mL. The

mean � SD TLV for the DM-affected group was 4.42 � 4.62.

Mean � SD TLV for the non-DM group was 4.52 � 7.13. There

was no statistically significant difference in TLV between groups.

On-line Fig 4 is a plot of GT TLV versus LST TLV at a k-threshold

of 0.25, demonstrating a strong linear relationship (R2 � 0.76).
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On-line Fig 5 is a plot of GT TLV versus average WM scores

demonstrating a nonlinear relationship for the subjective scale.

To perform nonlinear fitting of these data, the WM scores were

remapped from 0 –9 to 1–10, and 2 data points with zero GT TLV

were excluded. Logarithmic, polynomial, and power law relation-

ships all provided better fits than a linear fit. The highest R2 (0.72)

was provided by a logarithmic fit. Plotting WM scores versus

log(GT TLV) demonstrated a strong linear relationship (R2 �

0.73).

DISCUSSION
The LST was originally developed and evaluated for multiple scle-

rosis. Here, we validate its use for TLV measurement in subjects

with DM, relative to subjective rating scales. The pathophysio-

logic mechanisms leading to visible MR imaging WM changes in

DM are very different from those in multiple sclerosis. In multiple

sclerosis, the prototypic hallmark is focal demyelination with

varying degrees of gliosis and inflammation.16 The MR imaging

FLAIR appearance is typically that of focal well-demarcated

round or ovoid lesions. In contrast, WM lesions in the elderly, or

leukoaraiosis, tend to be more diffuse, with pathophysiology re-

lated to endothelial dysfunction and development of small-vessel

ischemia.1,17-19 In this regard, diabetic populations provide an

important validation of the LST methodology that can potentially

be extended to other populations in which WM lesion burden

relates to microvascular disease. Additionally, we examined a rel-

atively large cohort of non-DM siblings, providing a validation in

a normal elderly population.

LST Versus Subjective WM Lesion Scores
We demonstrate the LST to be comparable to subjective WM

scores for determining severity of WM lesion load in a population

with DM. A high degree of correlation was observed between TLV

computed by use of the LST and GT manual segmentation. LST

achieved a maximum correlation of 0.87, corresponding to a k-

threshold of 0.25, and appeared robust in its segmentation per-

formance, within a range of k-thresholds from 0.2– 0.4, all dem-

onstrating similar correlations. In comparison, the subjective

WM scoring demonstrated slightly weaker correlation with GT,

achieving a 0.84 correlation. This improved slightly to 0.85 by use

of the log of the GT TLV. Additionally, the subjective WM scores

demonstrated a nonlinear relationship to GT TLV. This is not

surprising because the amount of visible WM disease increases

substantially over the range of scores. That is, near total involve-

ment of the brain WM for a grade of 9 is much greater in volume

than 10 times the few lesions identified for a grade of 1. The use of

a logarithmic transformation of the GT TLV provided a clear

linear relationship to the subjective WM lesion scores. This find-

ing has important implications for studies that use the subjective

WM lesion rating scale. Studies that use the subjective WM lesion

rating scale with standard statistical regression models violate as-

sumptions of linearity and potentially affect the validity or signif-

icance of the results. The assumptions required for use of para-

metric testing (eg, Pearson correlation analysis) in this evaluation

were fulfilled through log transform of the data. Alternatively,

nonparametric testing can be used when these assumptions are

not met. Repeating these analyses by use of the Spearman rank

correlation test and Kendall � again demonstrated higher values

for the LST than subjective WM scores, but the differences did not

achieve significance. The Pearson correlation, however, provides

a more complete assessment of the associations between variables

when the underlying assumptions are attained.

The k-threshold corresponding to the maximum correlation

between subjective scoring and LST was lower than that for LST

and GT (0.15 versus 0.25). The lower k value in the LST corre-

sponds to a more relaxed threshold for detection of WM lesions.

This suggests that subjective ratings overestimate the true degree

of WM disease. The degree of reader bias toward overestimation

may be greater at the lower disease burden range, which was typ-

ical of our sample.

LST Versus GT
LST achieved a maximum R2 of 0.69 at a k-threshold of 0.25 in the

sample with DM. In contrast, the LST achieved a maximum R2 of

0.94 and optimum k-threshold of 0.3 in the recent evaluation of

multiple sclerosis.9 The performance difference between DM

and multiple sclerosis probably is an effect of disease severity. In

the multiple sclerosis evaluation, there was greater disease bur-

den, with TLV extending to �50 mL, compared with �35 mL

for our DM population. More importantly, the performance in

the multiple sclerosis population improved with increasing le-

sion volume, ranging from a mean Dice coefficient of 0.67 for

lesion volumes �5 mL to 0.85 for lesions volume �15 mL. The

multiple sclerosis evaluation did not appear to have a signifi-

cant number of subjects with TLV �1 mL (if any), whereas for

our population, most subjects had TLV �1 mL. Thus, the dif-

ference in performance for our group probably reflects disease

severity, with the LST performing less optimally at low disease

burdens, rather than a difference in lesion detectability be-

tween populations.

Automated Segmentation in Diabetes
Although automated WM lesion detection is an area of active

investigation, there have been very few studies validating tools in

a diabetic population. Jongen et al20 described a k-nearest neigh-

boring clustering algorithm used in a study of subjects with dia-

betes. de Bresser et al21 used the same algorithm in a separate study of

subjects with diabetes and white matter lesion load. Tiehuis et al22

also used the same algorithm in a study of cognitive function,

vascular disease and diabetes, and, in another study, showed that

it performs favorably compared with subjective rating scales with

reference to cognitive assessments.23 For all of these studies, per-

formance of the described algorithm was previously evaluated by

using a leave-on-out cross-validation procedure, achieving a sim-

ilarity index of 0.8.24 This validation, however, was performed

only on 10 elderly subjects with a history of vascular disease and

not specifically on patients with diabetes. A recently described

method with the use of support vector machines was evaluated

on a subset of 45 subjects from a larger study on the treatment

of diabetes.25 A single rater was used as the reference standard,

with 10 subjects used for training and the remaining 35 for

testing. This method demonstrated a high sensitivity (�0.9)

and a specificity of �0.85. Interestingly, this study had a sec-

ond manual rater but only used the first rater as the reference
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standard, possibly because of their reported large inter-rater

variability. In comparison to these studies, our study provides

a more direct evaluation of lesion segmentation in diabetes,

including a large sample size, and a more rigorous approach to

ground-truth determination.

WM Disease and Diabetes
The LST performance was very similar between DM-affected and

unaffected individuals, achieving similar maximum correlations

and optimum k-thresholds. There was no significant difference in

degree of WM lesion load between affected and unaffected

groups, by use of any of the metrics (WM scores, LST, or GT).

Whereas there is a convincing relationship between DM and la-

cunar infarcts and brain atrophy, the association with WM hyper-

intensities on conventional MR imaging is less clear.26 There has

been recent evidence suggesting that DM is an independent risk

factor for deep WM lesions in the elderly.27 Additionally, voxel-

wise analyses of diffusion tensor imaging and fractional anisot-

ropy have demonstrated early changes in white matter micro-

structural properties that were associated with diabetes

duration.28 Our sample may not have been large enough to detect

a between-group difference. Alternatively, the effects of aging may

be a greater contributor to the presence of visible WM disease

than DM. It should be noted that our DM population had very few

subjects with WM scores �5, and none were �7. We drew a

random sample from the Diabetes Heart Study, with WM disease

burdens probably reflecting the distribution of WM disease in the

general DM population. Conclusions about diabetes and WM

disease should not be made on the basis of this study because we

did not control for a variety of confounding effects, including

disease duration, co-morbidities, and medications.

Limitations
No subject had WM scores �7 or TLV �35 mL. This limits eval-

uation at the extreme end of disease burden. Also, our population

was skewed toward the lower end of disease burdens, with most

having TLV �1 mL. Although this is a limitation in terms of

disease distribution, it is also probably reflective of the true disease

burden and incidence of WM disease in the general population.

One critical limitation is generic to all studies of WM disease

burden, which is that there is no accepted reference standard.

Manual delineation by experienced readers comes closest to what

most would accept as a reference standard. The laborious nature

of manual WM segmentation makes it generally impractical to

have multiple raters. Semi-automated methodologies to facilitate

the procedure can introduce bias through predetermination of

potential lesion borders. Even with multiple readers, some readers

are typically more accurate (or meticulous). These limitations

may be mitigated by machine learning approaches that can weight

more accurate readers more heavily in the determination of GT.

We attempted to address these potential biases in GT segmenta-

tion with the use of a multi-tiered manual segmentation approach

with the final consensus manual segmentation performed by ex-

perienced neuroradiologists. This is a time-intensive and labori-

ous approach but allows confidence in the quality of the GT

determination.

CONCLUSIONS
We validate the use of the LST for determination of TLV in a

diabetic population and demonstrate that it performs as well

compared with GT as a widely used subjective WM lesion rating

scale. Additionally, we identify an optimal k-threshold of 0.25,

with robust performance between 0.2– 0.4 in this population. The

LST is a readily available substitute for subjective WM lesion scor-

ing in studies of diabetes and other populations prone to leu-

koaraiosis. Studies that use subjective WM lesion scores should be

cognizant of violations in assumptions of linearity for standard

statistical models with the use of this scale.
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