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WhiteMatter DTI
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2

ABSTRACT

BACKGROUND AND PURPOSE: MCI was recently subdivided into sd-aMCI, sd-fMCI, and md-aMCI. The current investigation aimed to
discriminate between MCI subtypes by using DTI.

MATERIALS AND METHODS: Sixty-six prospective participants were included: 18 with sd-aMCI, 13 with sd-fMCI, and 35 with md-aMCI.
Statistics included group comparisons using TBSS and individual classification using SVMs.

RESULTS: The group-level analysis revealed a decrease in FA inmd-aMCI versus sd-aMCI in an extensive bilateral, right-dominant network,
and a more pronounced reduction of FA in md-aMCI compared with sd-fMCI in right inferior fronto-occipital fasciculus and inferior
longitudinal fasciculus. The comparison between sd-fMCI and sd-aMCI, as well as the analysis of the other diffusion parameters, yielded no
significant group differences. The individual-level SVM analysis provided discrimination between theMCI subtypeswith accuracies around
97%. The major limitation is the relatively small number of cases of MCI.

CONCLUSIONS: Our data show that, at the group level, the md-aMCI subgroup has the most pronounced damage in white matter
integrity. Individually, SVM analysis of white matter FA provided highly accurate classification of MCI subtypes.

ABBREVIATIONS: AD � Alzheimer disease; aMCI � amnestic MCI; FA � fractional anisotropy; MCI � mild cognitive impairment; md-aMCI � multiple domains
MCI; sd-aMCI� single domain amnestic MCI; sd-fMCI� single domain frontal MCI; SVM� support vector machine; TBSS� tract-based spatial statistics

Although there are currently no proven disease-modifying

treatments for AD, several promising candidates have been

evaluated to date.1,2 However, recent studies pointed to their lim-

ited performance in patients with clinically overt dementia.3,4 To

date, the identification of patients at high risk for rapid cognitive

decline is considered a prerequisite for future curative strategies in

AD.

MCI represents a transition zone between normal aging and

very early dementia, characterized by selective memory deficits

associated, or not, with other cognitive dysfunctions.5 It was orig-

inally conceived as a functionally nondisabling amnestic disorder

that was later expanded to include essentially any form of cogni-

tive complaints.6 Based on the patterns of neuropsychologic def-

icits, MCI was recently subdivided into sd-aMCI with isolated

memory impairment; sd-fMCI, characterized by early deficits

confined to executive functions; and md-aMCI, which displays

widespread cognitive dysfunctions that affect memory and also

language, attention, and/or visuospatial abilities. For instance,

md-aMCI is thought to progress to clinically overt AD with an

annual rate of 10%–15%,6,7 whereas the other subgroups of MCI

may remain stable or evolve to other forms of dementia.8

Structural MR imaging was initially used to differentiate pa-

tients with MCI from healthy controls in cross-sectional studies.

Most earlier MR neuroimaging studies focused on the investiga-

tion of gray matter using voxel-based morphometry9 in MCI.10-15

A series of voxel-based morphometric studies revealed volume

differences between patients with MCI and controls mainly dis-

tributed within the precuneus and cingulate gyrus.16 More re-

cently, several contributions on various neurodegenerative dis-

eases reported that the changes in WM microstructure assessed

with DTI may be a more sensitive parameter compared with gray

matter data17-21 for detecting mild structural changes occurring at

the early stages of the degenerative process. Applying DTI analyses
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with voxelwise TBSS,22 an increasing number of contributions

described the damage of long interhemispheric and intrahemi-

spheric white matter tracts with homogeneously oriented fibers

(ie, genu or splenium of the corpus callosum, superior longitudi-

nal fasciculus, cingulus) and, more rarely, in frontal, parietal, and

temporal white matter in patients with MCI compared with

healthy controls.23-31

The biologic relevance of the description of MCI subtypes is

still a challenging issue. In particular, it is unclear whether the

neuropsychologic definition of these subtypes corresponds to dis-

tinct patterns of brain compromise. Earlier studies focusing on

brain atrophy patterns reported a predominant mesio-inferior

temporal lobe involvement in sd-aMCI and progressive damage

of other neocortical association areas in md-aMCI. Cases of

nonamnestic MCI are thought to have increased vascular burden

as well as focal atrophy of basal forebrain and hypothalamus.32-35

In contrast to gray matter, MR imaging investigations of WM

integrity in MCI subtypes are still very rare.36-38 They neither

included the whole spectrum of MCI subtypes nor explored the

usefulness of DTI parameters on the individual classification of

cases of MCI. We recently investigated FA patterns in prospec-

tively documented patients with MCI compared with healthy

controls and reported their use in the a priori identification of

progressive MCI.30 To explore the morphologic WM changes that

characterize each subtype of MCI, we assessed all DTI parameters

and developed models of automatic individual classification in a

community-based series of cases of sd-aMCI, md-aMCI, and sd-

fMCI. First, a group-level analysis using TBSS,22 an improved

voxel-based technique with respect to spatial normalization, was

performed to identify regions with altered white matter structure

between groups. As discussed above, recent investigations imple-

menting this technique in the domain of MCI23,24,28 documented

the presence of reduced FA primarily in white matter tracts with

homogeneously oriented fibers (ie, genu or splenium of the cor-

pus callosum, superior longitudinal fasciculus, cingulus) and,

more rarely, in frontal, parietal, and temporal white matter. How-

ever, other studies led to negative data challenging this point of

view.39 While such group-level data are fascinating from a re-

search perspective, these cannot be applied in clinical neuroradi-

ology for the diagnosis of individual patients. In addition to MCI

subgroup comparisons, we report here an individual-level classi-

fication analysis to explore the association between WM changes

and MCI subtype by using SVM analysis.40 The basic principle of

such pattern recognition analyses can be illustrated in the exam-

ple of face recognition. A single feature, for example, the nose, is

generally not sufficient to detect an individual subject— even

though the nose might show group differences, for example, be-

tween females and males. In contrast, individual faces can be iden-

tified by the combination of multiple features such as nose, ear,

chin, eyebrow, and so on, even though each feature per se is not

necessarily significantly different between groups (for a more de-

tailed description of pattern recognition analyses, see Haller et

al41). Originating from machine learning, this technique provided

individual risk scores for MCI conversion to AD on the basis of

gray matter voxel-based morphometry16,42-45 and WM DTI

data.30 In contrast to these studies that focused on the discrimi-

nation between MCI versus controls, or stable versus progressive

MCI, this work aims to explore the neuroradiologic background

of the previously cited subgroups of MCI and to provide MR

imaging tools for the individual classification of MCI subtypes.

MATERIALS AND METHODS
Participants
After formal approval by the local ethics committee, informed

written consent was obtained from all participants before inclu-

sion in this study. Sixty-six right-handed elderly subjects (66.2 �

5.0 years; 37 women) were recruited by using announcements in

local newspapers. All participants with MCI had normal or cor-

rected-to-normal visual acuity, and none reported a history of

major medical disorders (cancer, cardiac illness), sustained head

injury, psychiatric or neurologic disorders, or alcohol or drug

abuse. All participants characterized by regular use of psychotro-

pics, stimulants, and beta blockers, as well as those with severe

physical illness that precluded the participation in either phase of

the project, were excluded. The education level was defined ac-

cording to the Swiss scholar system, where level 1 � less than 9

years (primary school), level 2 � between 9 and 12 years (high

school), and level 3 � more than 12 years (university).

All subjects were screened with the Mini-Mental State Exam-

ination,46 the Lawton Instrumental Activities of Daily Living,47

and the Hospital Anxiety and Depression Scale.48 In addition,

extensive neuropsychologic testing was performed on the basis of

fully validated tools, with normative age- and education-cor-

rected norms in Europe. It included attention (Wechsler Adult

Intelligence Scale-Revised Code, Trail-Making Test A), working

memory (verbal: Forward Digit Span Test;49 visuo-spatial: Corsi

Block-Tapping Test50), episodic memory (verbal: Buschke Dou-

ble Memory Test 48 items;51 visual: Shapes Test52), executive

functions (Trail-Making Test A,53 Verbal Fluency Test,54,55 Wis-

consin Card Sorting Test56), language (Boston Naming Test57),

visual gnosis (Ghent Overlapping Figures Test58), and praxies

(ideomotor,59 reflexive,60 and constructional61 tests). Global cog-

nitive function was assessed by the Clinical Dementia Rating

scale.62 Participants having a test score more than 1.5 standard

deviations below the age-appropriate mean in any of the above

tests, and a Clinical Dementia Rating score of 0.5 but no dementia,

were diagnosed with possible MCI.63 Patients with MCI were fur-

ther divided into subtypes based on the extensive neuropsycho-

logic testing, according to the criteria by Petersen and collabora-

tors64 as follows:

sd-aMCI: impaired memory function for age and education;

decreased performance in the Buschke Double Memory Test 48

items.

sd-fMCI: impairment in a single cognitive domain other than

memory, most commonly frontal alteration; decreased perfor-

mance in the visual Shapes Test and/or the Trail Making Test B.

md-aMCI: multiple areas of cognitive impairment that fall

outside of predicted norms, but none sufficiently severe to con-

stitute dementia; decreased performance in the Wisconsin Card

Sorting Test and/or the Trail-Making Test A and/or the Corsi

Block-Tapping test.65

These patients were reviewed independently by 2 highly expe-

rienced clinicians, blinded to each other’s findings, and were in-

cluded in the respective MCI groups only if both clinicians con-
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curred on the diagnosis. The final sample included 18 patients

with sd-aMCI (65.8 � 5.4 years; 7 women), 13 patients with sd-

fMCI (67.0 � 4.7 years; 8 women), and 35 patients with md-aMCI

(66.2 � 5.23 years; 22 women). In agreement with community-

based data in this field, there was a predominance of patients with

md-aMCI in our sample. Moreover, sd-fMCI had a prevalence

close to that of sd-aMCI.66

MR Imaging
MR imaging was performed on a 3T clinical routine whole-body

scanner (Magnetom Trio; Siemens, Erlangen, Germany). We

used a standard DTI sequence: 12 diffusion directions isotropi-

cally distributed on a sphere, 1 B0 image with no diffusion weight-

ing, 128 � 128 � 64 matrix, 1.8 � 1.8 � 2.0 mm voxel size, TE 76

ms, TR 7800 ms, 1 average, 2:48 minutes. Additional sequences

(3D T1WI, 8:42 minutes; T2WI, 4:02 minutes; 3D FLAIR, 7:02

minutes) were acquired and analyzed to exclude brain pathology

such as ischemic stroke, subdural hematomas, or space-occupy-

ing lesions. In particular, white matter lesions were analyzed ac-

cording to the Fazekas score.67

Statistical Analysis

Demographic and Clinical Data. Demographic and clinical char-

acteristics, as well as neuropsychologic values were compared

among groups by using the nonparametric Kruskal-Wallis group

test. A pair-wise Dunn Multiple Comparison posttest was per-

formed if overall P was � .05.

DTI TBSS Analysis. Preprocessing of the FA data was carried out

by using the standard procedure of TBSS, as described in detail

before22,68 in the FSL software package (http://www.fmrib.ox.

ac.uk/fsl),69 notably obtaining a spatial normalization of the DTI

data, which is the basis for the following analyses. In principle,

TBSS projects all subjects’ FA data onto a mean FA tract skeleton

by using nonlinear registration. The tract skeleton is the basis for

voxelwise cross-subject statistics and reduces potential misregis-

trations as the source for false-positive or false-negative analysis

results. The other DTI-derived parameters—longitudinal, radial,

and mean diffusivity were analyzed in the same way by using

spatial transformation parameters that were estimated in the ini-

tial FA analysis. Voxelwise statistical analyses were corrected for

multiple comparisons implementing threshold-free cluster en-

hancement, considering fully corrected P values �.05 as signifi-

cant.70 Age and sex were used as nonexplanatory coregressors. We

used the Johns Hopkins University DTI-based white matter at-

lases (http://www.fmrib.ox.ac.uk/fsldownloads/), which is dis-

tributed in the FSL package, for anatomic labeling of the suprath-

reshold voxels.

SVM Individual Classification Analysis. The individual SVM clas-

sification analysis is, in principle, identical to a previous study.30

The individual classification was analyzed in the freely available

WEKA software package (Version 3.6.1; http://www.cs.waikato.

ac.nz/ml/weka/). It is based on the TBSS preprocessed data, which

notably include a spatial normalization into Montreal Neurolog-

ical Institute; standard space and a selection of the voxels of the

white matter skeleton. This dataset contained 149,775 voxels. Af-

ter conversion of the preprocessed DTI FA data in a WEKA-com-

patible data format, 3 separate analyses were performed for the

differences between each pair of MCI subgroups. The analysis

included 2 steps. In the first step, we performed a feature selection.

The rationale behind this step is that not all voxels discriminate

between groups. On the one hand, inclusion of nondiscriminative

voxels results in overlapping features (or voxels), which reduces

the accuracy of the classification. On the other hand, exclusion of

discriminative features also reduces the accuracy of the classifica-

tion. To identify the optimum number of voxels, we used the

feature selection algorithm “RELIEFF.”71 In principle, this

method ranks features (or voxels) that distinguish most between

classes. These are known as the relevant features. To avoid selec-

tion-related bias, we selected the top 1000 features implementing

10 repetitions of a 10-fold cross-validation. This means that the

data were divided into 10 parts; 9 parts were used for training and

the remaining part was used for testing. This was repeated 10

times such that each part was once used for testing. To further

reduce selection-related bias, we repeated this entire process 10

times. The second step consisted of the “actual” classification

analyses for each comparison by using the SVM algorithm “se-

quential minimal optimization”72 (distributed in the WEKA

package) with a radial basis function kernel.73 We chose the com-

monly used radial basis function kernel, which nonlinearly maps

samples into a higher dimensional space, because this kernel pro-

vided slightly better classification accuracy in the present study

and in a related previous study30 than a linear kernel. Unlike lin-

ear kernels, radial basis function can handle the case when the

relation between class labels and attributes is nonlinear. There are

2 parameters while using radial basis function kernels: C and

GAMMA. GAMMA represents the width of the radial basis func-

tion, and C represents the error/trade-off parameter that adjusts

the importance of the separation error in the creation of the sep-

aration surface. Based on our previous experience, GAMMA was

iteratively explored from 0.01 to 0.09, with an increment of 0.01,

while C was fixed to 1.00. Equivalent to the feature selection dis-

cussed above, we implemented 10 repetitions of a 10-fold cross-

validation to reduce selection-related bias. We present the average

results of 10 repetitions of 10-fold cross-validations for the best

parameter settings. The 3 MCI subgroups were pair-wise com-

pared in 3 distinct SVM analyses.

RESULTS
Clinical Data
The distribution of MCI subtypes in our series was similar to that

previously reported in community-based series.65,66 Age, sex, ed-

ucation, and Fazekas score did not differ significantly between the

3 groups (Table 1). Among cases of MCI, patients with sd-aMCI

had a significantly lower Buschke total score than both patients

with md-aMCI and those with sd-fMCI (Table 2). In contrast,

patients with sd-aMCI were quicker in the Trail-Making Test B

than both patients with md-aMCI and sd-fMCI, and in the Trail-

Making Test A compared with patients with md-aMCI. Patients

with md-aMCI had significantly lower Corsi scores than those

with sd-fMCI (P � .008).
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TBSS Group Differences
Compared with patients with sd-aMCI, those with md-aMCI had

significantly reduced FA in a bilateral, right-dominant network,

including right uncinate fasciculus, forceps minor, and internal

capsule as well as bilateral inferior fronto-occipital fasciculus, an-

terior thalamic radiation, superior longitudinal fasciculus, infe-

rior longitudinal fasciculus, and corticospinal tract (Fig 1, Table

3). The inverse comparison and the analysis of longitudinal dif-

fusivity, radial diffusivity, or mean diffusivity yielded no signifi-

cant differences. Importantly, md-aMCI displayed a significant

FA decrease in right inferior fronto-occipital fasciculus and infe-

rior longitudinal fasciculus compared with sd-fMCI (Fig 1, Table

3). Again, the inverse comparison and the analysis of longitudinal

diffusivity, radial diffusivity, or mean diffusivity yielded no signif-

icant differences. The comparison between sd-aMCI and sd-fMCI

yielded no significant differences.

SVM Individual Classification Analysis
Confirming the strength of the association between these patterns

of WM changes and MCI subtypes, SVM analysis of FA provided

a correct classification between the MCI subgroups with accura-

cies of 98.40 (�5.90)% for md-aMCI versus sd-fMCI; 97.70

(�6.61)% for md-aMCI versus sd-aMCI; and 99.67 (�3.33)% for

sd-fMCI versus sd-aMCI (Table 4).

DISCUSSION
Our investigation led to 2 main findings. Paralleling the multiple

cognitive deficits that characterize their clinical expression, pa-

tients with md-aMCI displayed a more widespread damage of

long interhemispheric pathways, mainly in the right hemisphere

compared with the single-MCI subgroups. The most relevant data

concern the possibility of using the SVM technique to correctly

classify each patient in the MCI subgroups with an accuracy

higher than 95%.

DTI Parameters in MCI Subtypes
Among the different DTI parameters studied, only the FA corre-

lated with the clinical diagnosis of MCI subtypes. Interestingly,

the other DTI-derived diffusion parameters—longitudinal diffu-

Table 1: Demographic and clinical characteristics

Variables sd-aMCI md-aMCI sd-fMCI
sd-aMCI Compared
with md-aMCI

sd-aMCI Compared
with sd-fMCI

md-aMCI Compared
with sd-fMCI

Age (years) 65.8� 5.4 66.2� 5.2 67.0� 4.7 .897 (NS) .445 (NS) .358 (NS)
Gender (F/M) 7/11 22/13 8/5 .100 (NS) .220 (NS) .933 (NS)
Education 2.6� 0.6 1.9� 0.7 1.9� 0.8 .019 (NS) .120 (NS) .284 (NS)
MMSE 28.4� 1.5 27.7� 1.8 28.5� 1.5 .115 (NS) .884 (NS) .141 (NS)
IADL 8.8� 0.8 8.3� 0.8 7.8� 1.2 .018 (NS) .016 (NS) .310 (NS)
HAD (anxiety) 4.8� 3.3 6.1� 3.0 5.9� 3.0 .147 (NS) .176 (NS) .726 (NS)
HAD (depression) 1.9� 1.9 2.1� 1.7 2.9� 3.3 .645 (NS) .514 (NS) .382 (NS)
Fazekas score 0.7� 0.5 1.1� 0.9 1.2� 1.0 .090 (NS) .851 (NS) .148 (NS)

Note:—Data are presented as mean � SD. Demographic and clinical characteristics did not differ between the 3 groups. NS refers to the Dunn Multiple comparison test
adjusted P-value threshold for each demographic and clinical characteristic. sd-fMCI, n� 13; sd-aMCI, n� 18; md-aMCI, n� 35. HAD indicates Hospital Anxiety & Depression;
IADL, Instrumental Activities of Daily Living; MMSE, Mini-Mental State Examination.

Table 2: Neuropsychologic data

Variables sd-aMCI md-aMCI sd-fMCI
sd-aMCI Compared
with md-aMCI

sd-aMCI Compared
with sd-fMCI

md-aMCI Compared
with sd-fMCI

Attention
WAIS-R; Code 63.1� 11.4 55.0� 13.1 53.0� 12.8 .01461 (NS) .1458 (NS) .3150 (NS)
Trail-Making Test A (s) 35.7� 7.3 47.9� 18.1 45.0� 11.3 .001 (S) .151 (NS) .4354 (NS)

Working Memory
Verbal (Digit) 6.8� 2.2 6.1� 1.6 7.0� 1.8 .233 (NS) .839 (NS) .135 (NS)
Visuospatial (Corsi) 5.7� 1.4 4.4� 1.4 5.9� 1.1 .008 (NS) .246 (NS) .0015 (S)
Episodic Memory
Verbal (Buschke 48)
Total score 19.2� 4.2 23.63� 6.0 24.62� 2.3 .0004 (S) .0003 (S) .201 (NS)
Immediate recall 38.0� 5.2 37.3� 3.4 39.5� 3.9 .720 (NS) .376 (NS) .230 (NS)
Differed cued recall 18.4� 3.7 23.6� 6.4 24.6� 2.3 .163 (NS) .395 (NS) .900 (NS)

Intrusions 3.8� 3.5 4.0� 2.9 3.6� 4.9 .501 (NS) .597 (NS) .202 (NS)
Visual (Shapes) 11.8� 0.7 11.0� 1.5 12.0� 0.0 .147 (NS) .443 (NS) .049 (NS)

Executive functions
Trail-Making Test B (s) 54.2� 14.3 90.3� 41.0 96.50� 41.3 .000032 (S) .00015 (S) .33006 (NS)
Verbal Fluency 22.7� 6.9 22.5� 7.1 21.2� 6.1 .798 (NS) .335 (NS) .709 (NS)
Wisconsin 5.6� 2.1 4.7� 1.8 4.0� 2.5 .104 (NS) .049 (NS) .407 (NS)
Language (Boston) 19.4� 0.8 19.1� 0.9 19.6� 0.7 .157 (NS) .570 (NS) .055 (NS)
Visual gnosis (Ghent) 5.0� 0.0 5.0� 0.0 5.0� 0.0 .500 (NS) .500 (NS) .500 (NS)

Standardized praxies
Ideomotor 19.1� 1.0 18.9� 1.3 19.2� 1.1 .188 (NS) .148 (NS) .919 (NS)
Reflexive 7.7� 0.5 7.0� 1.0 6.9� 0.9 .0161 (NS) .0139 (NS) .2942 (NS)
Constructional 9.6� 0.9 9.1� 1.2 3.4� 0.5 .806 (NS) .371 (NS) .499 (NS)

Note:—Data are presented as mean� SD. sd-fMCI, n� 13; sd-aMCI, n� 18; md-aMCI, n� 35. S and NS refer to the significant and nonsignificant Dunn multiple comparison
test adjusted P-value threshold for each demographic and clinical characteristic. Wisconsin: number of completed categories (/6); ideomotor praxis: transitive and intransitive
(/30). WAIS-R indicates Wechsler Adult Intelligence Scale-Revised.
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sivity, mean diffusivity, and radial diffusivity—yielded no signif-

icant group differences. This is consistent with a recent (2012)

study by Bosch and colleagues,28 indicating that FA more closely

correlates to the cognitive profile than longitudinal diffusivity or

radial diffusivity in patients with MCI and healthy controls. How-

ever, another recent TBSS study assessing the same diffusion pa-

rameters in clinically overt AD cases compared with healthy con-

trols led to the opposite results.74 The few available recent

FIG 1. TBSS analysis between MCI subtypes. md-aMCI compared with sd-aMCI had significantly reduced FA (red to yellow) in a bilateral
right-dominant network including right uncinate fasciculus, forceps minor, and internal capsule, as well as bilateral inferior fronto-occipital
fasciculus, anterior thalamic radiation, superior longitudinal fasciculus, inferior longitudinal fasciculus, and corticospinal tract. md-aMCI com-
pared with sd-fMCI had less pronounced reduction in FA in right inferior fronto-occipital fasciculus and inferior longitudinal fasciculus (blue to
light blue). Axial, sagittal, and coronal sections at the indicated position in Montreal Neurological Institute; standard space coordinates
(radiologic convention with right hemisphere on left-hand side).Gray, mean FA value; green, average skeleton. Threshold-free cluster enhance-
ment–corrected for multiple comparisons at P � .05. Suprathreshold voxels were enlarged by using TBSS fill (part of FSL) for illustrative
purposes.

Table 3: List of suprathreshold clusters (threshold-free cluster enhancement–corrected at P< .05) for the comparison of MCI
subgroups
Cluster
Index Voxels Z-MAX

Z-MAX X
(mm)

Z-MAX Y
(mm)

Z-MAX Z
(mm)

Z-COG X
(mm)

Z-COG Y
(mm)

Z-COG Z
(mm) Side Anatomic Location

sd-fMCI versus
md-aMCI
1 40 .952 �12 �86 �7 �12.8 �85.2 �4.18 Right Inferior fronto-occipital

fasciculus (occipital)
Inferior longitudinal fasciculus
(occipital)

2 12 .951 �7 �84 �3 �7.17 �83.8 �2.5 Right Inferior fronto-occipital
fasciculus (occipital)
Inferior longitudinal fasciculus
(occipital)

sd-aMCI versus
md-aMCI
1 3409 .973 25 28 0 29.6 4.3 20.3 Right Inferior fronto-occipital

fasciculus (frontal)
Uncinate fasciculus
Anterior thalamic radiation
Internal capsule
Superior longitudinal fasciculus
Corticospinal tract

2 694 .966 �25 �24 24 �32.4 �35.5 13.1 Left Anterior thalamic radiation
Superior longitudinal fasciculus
Corticospinal tract
Inferior fronto-occipital
fasciculus
Inferior longitudinal fasciculus

3 175 .959 15 �8 56 16.4 �7.61 52.9 Right Superior longitudinal fasciculus
4 66 .954 17 47 �9 17.1 48.9 �6.96 Right Forceps minor

Uncinate fasciculus
Anterior thalamic radiation

Note:—Cluster index, number of suprathreshold voxels in cluster, maximum P value, location ofmaximum P value per cluster inMontreal Neurological Institute; standard space
(X, Y, Z), and center of gravity of the cluster in NMI standard space (X, Y, Z).
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investigations on the different diffusion parameters in normal

aging, MCI, and AD28,74-77 provided inconsistent data with re-

spect to the regional differences in the distribution of significant

changes in FA, longitudinal diffusivity, radial diffusivity, and

mean diffusivity. For example, in the above mentioned study of

subjects with MCI and AD, FA was more closely related to the

cognitive profile than longitudinal diffusivity or radial diffusiv-

ity.28 In contrast, another study in AD showed stronger differ-

ences in longitudinal diffusivity, radial diffusivity, and mean dif-

fusivity than FA.74 It is likely that the sensitivity of the different

diffusion parameters may vary substantially as a function of the

disease severity. Research using these different diffusion indices is

still at an early stage, as is our understanding of the relevance of

longitudinal diffusivity and radial diffusivity changes in terms of

myelin or axonal damage. FA changes without parallel modifica-

tions in other diffusion parameters as those observed in our cases

of MCI support the idea of group differences at the level of fiber

tract coherence rather than myelin or axonal integrity loss.78 In

clinically overt AD, the predominance of myelin loss is accompa-

nied by concomitant changes in DTI parameters. Finally, walle-

rian degeneration suggested by increased mean diffusivity, with-

out significant changes in FA, may take place only in advanced

stages of the degenerative process.79 Future work is clearly war-

ranted to elucidate the biologic significance of DTI parameter

changes over time in aging, MCI, and AD.

TBSS Analysis
The number of previous DTI studies of MCI subtypes implement-

ing a similar voxelwise TBSS analysis is still limited. Most investi-

gations included only 1 (not further specified) MCI group,23-25 or

only the sd-aMCI subtype,26-29 or a mix of several subtypes, with

the aim of discriminating stable versus progressive MCI.30 Only 3

recent contributions compared DTI patterns in aMCI versus non-

MCI.36,37 In their study of 55 patients with aMCI and 41 patients

with non-MCI, Chua et al36 reported significantly lower FA in the

splenium of corpus callosum and significantly higher mean diffu-

sivity in the left parahippocampal subgyrus in the aMCI com-

pared with the non-MCI group. Zhuang et al37 included 96 pa-

tients with aMCI and 69 patients with non-MCI. Despite the

higher number of cases, the comparison between aMCI versus

non-MCI yielded no significant differences in this investigation.

A possible explanation for this observation might be the hetero-

geneous constitution of the non-MCI group, which included

cases with various neuropsychologic profiles (and presumably

FA-related patterns). Another recent study by O’Dwyer et al31

implemented a very similar analysis approach as did our previous

work in stable versus progressive MCI.30 The use of SVM analysis

of TBSS-preprocessed DTI data provided highly accurate dis-

criminations of patients with MCI versus controls, patients with

aMCI versus patients with non-MCI and controls, as well as pa-

tients with non-MCI versus patients with aMCI and controls. In

contrast to the present study, O’Dwyer et al31 did not specifically

assess the classification between MCI subtypes. Moreover, this

contribution explored only aMCI and non-MCI, while the cur-

rent study uses a more detailed discrimination of MCI into 3

subtypes. Using a careful neuropsychologic characterization, the

present study is the first, to our knowledge, that describes distinct

patterns of WM changes among the 3 MCI subtypes. The wide-

spread involvement of long intrahemispheric connections within

the right hemisphere in md-aMCI compared with sd-aMCI is

expected, as it corresponds to the progressive deterioration of

several cognitive functions other than memory preceding the

conversion to AD. These anatomic observations fit with func-

tional data collected in the same cohort, revealing altered right

hemispheric electrophysiologic patterns during face recognition

in md-aMCI compared with sd-aMCI.80 The more pronounced

damage of inferior fronto-occipital and inferior longitudinal fas-

ciculi in md-aMCI compared with sd-fMCI is in agreement with

the retrogenesis hypothesis in AD that postulates an early involve-

ment of late-myelinating pathways in the initial phases of the

degenerative process.29,31 The comparison between sd-fMCI and

sd-aMCI yielded no significant group differences. There are 2

possible explanations for this result. First, md-aMCI is known to

be a very heterogeneous group that covers not only the linear

evolution of sd-aMCI over time but also several AD pathology-

independent causes of dementia.81 Alternatively, the small num-

ber of cases included in the sd-aMCI group may be not sufficient

to identify subtle MR imaging differences compared with sd-

fMCI. Supporting the idea that sd-fMCI cases form an etiopatho-

genetically distinct group, possibly not evolving to AD, a recent

study by Grambaite et al82 reported increased radial and mean

diffusivities in rostral middle frontal, medial orbitofrontal, caudal

anterior cingulate, posterior cingulate, and retrosplenial cortices

that correlated with attention/executive deficits in these cases.

Further investigations in larger cohorts, including longitudinal

follow-up of the different MCI subtypes, are needed to explore the

biologic substrates of cognitive deficits in sd-fMCI.

SVM Individual Classification Analysis
Neuroimaging research has been dominated for decades by

group-level comparisons, typically of a patient group versus a

control group, with the aim of identifying group-related changes

in brain morphometry. While such group-level studies provide

fascinating insights into disease-related morphometric altera-

tions from a research perspective, these group-level results cannot

be transferred into clinical neuroradiology to identify the early

stages of the dementing process at an individual level. To obtain

individual discrimination between MCI subgroups, we adopted a

complex methodology including a processing chain of TBSS pre-

processing of DTI FA data, feature selection of the most discrim-

Table 4: Individual SVM classification based on DTI FA TBSS
md-aMCI
versus
sd-fMCI

md-aMCI
versus
sd-aMCI

sd-fMCI
versus
sd-aMCI

Number of subjects 34/11 34/15 11/15
Chance rate 0.76 0.69 0.58
SVM analysis
Accuracy 98.40 (5.90) 97.70 (6.61) 99.67 (3.33)
TP rate 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FP rate 0.06 (0.23) 0.07 (0.20) 0.01 (0.05)
TN rate 0.94 (0.23) 0.94 (0.20) 1.00 (0.05)
FN rate 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Note:—Accuracy, true-positive (TP), false-positive (FP), true-negative (TN), and false-
negative (FN) rates for individual classifications using a SVM classifier. Note that the
accuracy is calculated as average accuracy of 10 repetitions using 10-fold cross-vali-
dation (average and standard deviation).
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inative voxels, and subsequent SVM classification.30,83 The clas-

sification accuracy of approximately 97% for all MCI subtypes in

our series implies that only 1 subject was incorrectly classified,

regardless of MCI subgroup. Note that the inclusion of a control

group is not necessary for such individual-level classification

analyses, as a classifier that perfectly discriminates, for example, 1

MCI subtype versus healthy controls may not necessarily also dis-

criminate between the different MCI subtypes. In fact, the brain

regions (or features) that best discriminate between MCI subtypes

are probably different from those regions that best discriminate

between patients with MCI and healthy controls. The imple-

mented individual-level classification analysis is fundamentally

different from the “classic” group-level comparisons and explains

why we did not include a healthy control group in this study.

At first glance, it might appear counterintuitive that the SVM

individual classification was very successful in discriminating sd-

fMCI versus sd-aMCI, despite the absence of threshold-free clus-

ter enhancement– corrected suprathreshold differences for the

corresponding TBSS group comparison. This can, however, be

readily explained by the major conceptual differences between

these techniques. For the TBSS group-level analysis, around

150,000 voxels are analyzed. This large amount of multiple com-

parisons requires strict multiple-comparisons correction. In con-

trast, the SVM analysis creates only 1 parameter per case and

hence there is no need for multiple comparisons. In addition,

TBSS analyzes each voxel separately, while SVM combines multi-

ple features (or voxels), thus enhancing the signal-to-noise ratio.

Both effects are complementary and readily explain the higher

sensitivity of SVM compared with TBSS.

Two previous studies successfully applied a SVM classifier to

discriminate patients with AD versus healthy controls based on

gray matter (after voxel-based morphometry preprocessing),

with accuracies of 89%42 and 94.5%.45 Three more recent gray

matter contributions classified stable versus progressive MCI with

accuracies of 75%,16 81.5%,44 and 85%.43 In 1 of our previous

SVM studies based on WM (after DTI TBSS preprocessing), the

classification of stable versus progressive MCI reached an accu-

racy of 98%.30 Only 1 previous study explored individual classifi-

cation of aMCI versus non-MCI using a binary logistic regression

model of single anatomic regions.36 DTI changes in the left pos-

terior cingulate distinguished aMCI from non-MCI with a sensi-

tivity of 80% and specificity of 60.3%. The multi-voxel pattern

recognition approach of the current investigation combines mul-

tiple regions for the individual classification analysis and yielded

substantially higher classification accuracies.

Strengths and Limitations
Strengths of the present work include the selection of communi-

ty-based cases of MCI, in-depth neuropsychologic characteriza-

tion, as well as combined use of TBSS and SVM analyses. Several

limitations should, however, be considered when interpreting

these data. From a clinical viewpoint, this cross-sectional group

comparison investigates the structural substrates of MCI sub-

groups but did not provide information about their evolution

over time. Whether the observed DTI changes alone, or in com-

bination with molecular AD markers such as amyloid imaging or

CSF amyloid/� levels, could predict rapid cognitive decline (or

conversion to AD) in each MCI subgroup remains to be eluci-

dated. Correlations between neuropsychologic and neuroimaging

data were not performed in order to avoid multiple comparison

biases created by the limited sample. This latter point may also

affect the results of the SVM analysis. In fact, the very high accu-

racy rates of individual classification exceeded our expectations.

These values were obtained by a well-established 10-fold cross-

validation, where 9 parts are used for training and the remaining

part is used for testing the classifier. Even though this cross-vali-

dation approach is a standard method in the field of machine

learning/multi-voxel pattern analysis, and is appropriate for the

number of subjects involved in our study, the present results seem

too optimistic, probably related to some degree of overfitting of

the data. Moreover, we first performed a feature selection (ratio-

nale discussed above), which might further contribute to some

degree of overfitting. Finally, the nonlinear (radial basis function

kernel) SVM does not provide an easy-to-interpret weight vector

to examine the biologic compromise associated with MCI sub-

types. Additional validation in larger independent datasets, which

should be ideally acquired on different MR scanners, is warranted

to confirm the present findings.

CONCLUSIONS
The reliable definition of MCI subtypes is a sine qua non condi-

tion for developing appropriate curative or symptomatic treat-

ments before the irreversible brain damage that characterizes se-

vere forms of dementia. Our data show that a highly accurate

classification of MCI subtypes at the individual level can be ob-

tained by SVM analysis of DTI-derived modifications in FA. The

high proportion of subjects with MCI who already undergo brain

MR imaging during work-up of dementia suspicion in routine

clinical settings, in combination with the short measurement time

of DTI and potentially almost automatic postprocessing of the

data, imply a potential benefit and clinical practicability of this

objective and individual classifier.
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APPENDIX
Essential Data Processing Steps

1) DTI data acquisition

2) TBSS data preprocessing (including reconstruction of FA,

longitudinal diffusivity, radial diffusivity, and mean diffusivity, as

well as spatial normalization into Montreal Neurological Insti-

tute; standard space)

3) Group-level analysis:

Group-level comparison of FA, longitudinal diffusivity, radial

diffusivity, and mean diffusivity using Randomise Permutation

Testing

4) Individual-level classification feature selection using

Relieff:

10 repetitions of 10-fold cross-validation

SVM classification

10 repetitions of 10-fold cross-validation

Radial basis function kernel

GAMMA from 0.01 to 0.09 with increments of 0.01,

C fixed to 1.00
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