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ORIGINAL RESEARCH
ADULT BRAIN

Molecular Subtype Classification in Lower-Grade Glioma with
Accelerated DTI

X E. Aliotta, X H. Nourzadeh, X P.P. Batchala, X D. Schiff, X M.B. Lopes, X J.T. Druzgal, X S. Mukherjee, and X S.H. Patel

ABSTRACT

BACKGROUND AND PURPOSE: Image-based classification of lower-grade glioma molecular subtypes has substantial prognostic value.
Diffusion tensor imaging has shown promise in lower-grade glioma subtyping but currently requires lengthy, nonstandard acquisitions. Our
goal was to investigate lower-grade glioma classification using a machine learning technique that estimates fractional anisotropy from
accelerated diffusion MR imaging scans containing only 3 diffusion-encoding directions.

MATERIALS AND METHODS: Patients with lower-grade gliomas (n � 41) (World Health Organization grades II and III) with known
isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status were imaged preoperatively with DTI. Whole-tumor volumes were
autodelineated using conventional anatomic MR imaging sequences. In addition to conventional ADC and fractional anisotropy recon-
structions, fractional anisotropy estimates were computed from 3-direction DTI subsets using DiffNet, a neural network that directly
computes fractional anisotropy from raw DTI data. Differences in whole-tumor ADC, fractional anisotropy, and estimated fractional
anisotropy were assessed between IDH-wild-type and IDH-mutant lower-grade gliomas with and without 1p/19q codeletion. Multivariate
classification models were developed using whole-tumor histogram and texture features from ADC, ADC � fractional anisotropy, and
ADC � estimated fractional anisotropy to identify the added value provided by fractional anisotropy and estimated fractional anisotropy.

RESULTS: ADC (P � .008), fractional anisotropy (P � .001), and estimated fractional anisotropy (P � .001) significantly differed between
IDH-wild-type and IDH-mutant lower-grade gliomas. ADC (P � .001) significantly differed between IDH-mutant gliomas with and without
codeletion. ADC-only multivariate classification predicted IDH mutation status with an area under the curve of 0.81 and codeletion status
with an area under the curve of 0.83. Performance improved to area under the curve � 0.90/0.94 for the ADC � fractional anisotropy
classification and to area under the curve � 0.89/0.89 for the ADC � estimated fractional anisotropy classification.

CONCLUSIONS: Fractional anisotropy estimates made from accelerated 3-direction DTI scans add value in classifying lower-grade glioma
molecular status.

ABBREVIATIONS: AUC � area under the curve; Codel � codeletion; dFA � fractional anisotropy estimates; FA � fractional anisotropy; LGG � lower-grade glioma;
MUT � mutated; Noncodel � noncodeleted; WT � wild-type; IDH � isocitrate dehydrogenase

The classification of diffuse lower-grade gliomas (LGGs) into

molecular subtypes as designated by the World Health Orga-

nization in 2016 has important prognostic implications. Median

survival in LGG is �6 years in the presence of an isocitrate dehy-

drogenase (IDH) gene mutation (IDHMUT) but reduces to �2

years in the absence of such a mutation (IDH wild-type

[IDHWT]).1 Among IDHMUT LGGs, the presence of 1p/19q chro-

mosomal codeletion (IDHMUT-Codel) predicts sensitivity to

chemoradiation therapy and further improves overall survival

compared with 1p/19q noncodeleted LGGs (IDHMUT-Non-

codel).1,2 Moreover, the impact of surgery appears to differ

among the molecular subtypes.3,4 Therefore, noninvasive, pre-

surgical imaging biomarkers that can reliably predict genomic

subtypes are of strong clinical interest.

Diffusion-weighted imaging and diffusion tensor imaging are

quantitative MR imaging techniques that probe microstructural

tissue characteristics by observing the rate and directionality of

restricted water diffusion. Both DWI and DTI have demonstrated

sensitivity to IDH-mutation and 1p/19q codeletion status in
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LGGs via differences in the ADC and/or fractional anisotropy
(FA),5-8 which have been attributed to differences in cellularity

and tumor proliferation rates among subtypes.9 While FA has

been shown to provide additional value beyond ADC in LGG

subtyping, it currently requires the addition of a DTI scan, which

is a more specialized imaging technique than DWI and is not part

of most routine clinical protocols. Furthermore, because DTI re-

quires acquisitions with diffusion encoding along many direc-

tions (at least 6, typically �20), its acquisition time is substantially

longer than conventional DWI, which only requires diffusion

encoding along 3 orthogonal directions. Although MR imaging

acceleration techniques such as simultaneous multislice imaging

and compressed sensing can greatly accelerate DTI acquisi-

tions,10,11 most clinical diffusion MR imaging scans are still

DWIs.

A recently developed DTI reconstruction method called Diff-

Net (https://github.com/ealiotta/diffnet) uses machine learning

to estimate FA from accelerated scans with as few as 3 diffusion-

encoding directions.12 This means that, in principle with DiffNet,

the discriminatory power provided by DTI can be extracted from

standard DWI scans. While DiffNet has been shown to provide

accurate FA map estimates, it remains to be seen whether these

estimates add the same value as conventionally reconstructed FA

maps from DTI in LGG molecular subtyping.

The purpose of this study was to determine whether FA

values estimated using DiffNet from diffusion MR imaging

scans with only 3 diffusion-encoding directions add discrimi-

natory value beyond ADC in LGG molecular subtyping. We

evaluated the LGG classification in patients who underwent

preoperative DTI scans in addition to standard contrast-en-

hanced MR imaging brain protocols. Classifications were per-

formed using bootstrapped multinomial linear regressions us-

ing whole-tumor histogram and texture features from ADC

maps alone, ADC plus FA maps, and ADC-plus-DiffNet esti-

mated FA (dFA) maps.

MATERIALS AND METHODS
Patient Cohort
The local institutional review board ap-

proved this retrospective study and pro-

vided a waiver of the informed consent

requirement. One hundred forty-six pa-

tients with pathologically confirmed

World Health Organization grade II and

III gliomas who were imaged at our in-

stitution between 2012 and 2019 were

identified. Patients with an unknown

molecular subtype (n � 20), without

full preoperative contrast-enhanced MR

imaging examinations (n � 15), and

without preoperative DTI (n � 66) or

with preoperative DTI with an inconsis-

tent protocol (n � 3) were excluded.

One additional patient was excluded

from analysis due to an unsuccessful tu-

mor autosegmentation (process de-

scribed below), leaving a total of 41 pa-

tients (IDHWT� 15; IDHMUT-Codel � 12; IDHMUT-Noncodel �

14) who were included in our analysis. This group comprised 26

World Health Organization grade II and 15 World Health Orga-

nization grade III tumors and 24 male and 17 female patients with

a mean age of 45.9 years (range, 18 –76 years). A flow chart de-

scribing the study population is shown in Fig 1.

Neuropathology
IDH-mutation and 1p/19 codeletion status were tested for all pa-

tients in the molecular pathology laboratory at our institution.

Formalin-fixed, paraffin-embedded tissue sections were pro-

cessed routinely for histologic and immunohistochemical analy-

sis. IDH mutation status was tested using immunohistochemistry,

in which IDH1 R132H mutations were detected with H09 anti-

bodies.13 In immunohistochemistry cases negative for IDH1 R132H

mutations, IDH1/2 mutation status was assessed using DNA pyrose-

quencing as described previously.14 The 1p/19q codeletion status was

determined using dual color fluorescence in situ hybridization15

(n � 38) or chromosomal microarray analysis using the OncoScan

(Thermo Fisher Scientific, Waltham, Massachusetts) platform

(n � 3).

Imaging Protocols
Patients were imaged on either 1.5T (n � 3) or 3T scanners (n �

38) with pre- and postcontrast T1-weighted scans (TE � 1.9 –5.0

ms, TR � 9.5–2300 ms, in-plane resolution � 0.5–1.1 mm, slice

thickness � 0.9 –1.2 mm) as well as T2-weighted (TE � 82– 413

ms, TR � 3200 –9000 ms, in-plane resolution � 0.25–1.0 mm,

slice thickness � 0.9 –5.0 mm) and T2 FLAIR scans (TE � 80 –388

ms, TR � 5000 –10,000 ms, TI � 2800 –2500 ms, in-plane reso-

lution � 0.5–1.0 mm, slice thickness � 0.9 –5.0 mm). The DTI

protocol included 20 diffusion-encoding directions with b�1000

s/mm2 and 1 b�0 reference, 1.7- to 1.9-mm in-plane spatial res-

olution, 4.0- to 5.0-mm slice thickness with slice-interleaved sin-

gle-shot EPI (TE � 6 –104 ms and TR � 3300 – 4800 ms). DTI

FIG 1. Patient population flow chart.
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scans were repeated 2– 4 times and averaged off-line to improve

the SNR.

Tumor Segmentation
Conventional MR images (T1 pre- and postcontrast, T2, and

T2-FLAIR) were coregistered to the reference frame of the T1

postcontrast images. Brain extraction was then performed us-

ing the Robust Brain Extraction algorithm (https://www.

nitrc.org/projects/robex),16 followed by automatic tumor seg-

mentation using DeepMedic (https://github.com/Kamnitsask/

deepmedic)17 as implemented in the Brain Cancer Imaging

Phenomics Toolkit (https://captk.projects.nitrc.org/).18 Fol-

lowing autosegmentation, tumor volumes were reviewed for

obvious errors or segmentation failures, and clearly spurious

regions were removed. The DeepMedic output included spe-

cific regions for edema, contrast-enhancing gross tumor, and

nonenhancing tumor, but all regions were combined into sin-

gle, whole-tumor ROIs. These ROIs were then registered onto

the lower resolution DTI reference frame.

ADC and FA Reconstruction
ADC and FA values were reconstructed off-line from DTI us-

ing conventional linear-least-squares fitting and Eigensytem

decomposition19 at each voxel using custom Matlab code (Math-

Works, Natick, Massachusetts).

Subsets containing only 3 diffusion encoding directions were

then extracted from the full DTI scans to replicate conventional

DWI acquisitions and simulate a scenario in which DTI was not

acquired. These directions were selected to maximize orthogonal-

ity and thus closely mimic a DWI acquisition. dFA maps were

then computed from these undersampled scans by applying the

DiffNet neural network at each voxel.12 DiffNet consists of a mul-

tilayer perceptron neural network design with 2 hidden layers and

a total of 200 nodes and was previously trained to compute FA

values from undersampled DTI signals at individual voxels. Diff-

Net can estimate FA without a full DTI dataset because it bypasses

the intermediary tensor-model-fitting reconstruction step and di-

rectly infers FA from raw data. DiffNet was implemented in

Python (python.org) and is available for download

(github.com/ealiotta/diffnet).

ADC and FA Comparisons
Differences in ADC, FA, and dFA among LGG subgroups

were assessed by computing mean whole-tumor values for each

parameter and comparing distributions among subgroups us-

ing the Student t test. Statistical significance was assessed

using the Bonferroni correction for multiple comparisons in

which P values � 0.008 (.05/6) were considered statistically

significant.

Histogram Feature Extraction
To assess the full distributions of each DTI parameter, we ex-

tracted several histogram features for ADC, FA, and dFA within

whole-tumor ROIs. As described elsewhere,6 10th, 25th, 50th,

75th, 90th percentile values, skewness, and kurtosis were com-

puted from ADC, FA, and dFA distributions.

Texture Feature Extraction
Texture analysis of the ADC, FA, and dFA maps was performed

using gray level co-occurrence matrices as previously de-

scribed in this context.6 For each map, homogeneity, correla-

tion, energy, and contrast were computed within the whole-

tumor ROIs using a Matlab-based radiomic toolbox (https://

github.com/mvallieres/radiomics) developed by Vallières et

al.20 Gray level co-occurrence parameters were computed

within each ROI using equal-probability quantization at 8

quantization levels. The number of radiomic features was kept

purposely small to avoid false-positive discoveries, given our

cohort size.21

Multivariate Classification
In total, 12 features (mean, 7 histogram features, and 4 texture

features) were compiled for each ADC, FA, and dFA map. To

classify IDH-mutation and 1p/19q codeletion statuses using all

available features, we developed multivariate logistic regres-

sion models using imbalance-adjusted bootstrap resam-

pling.20,22 Imbalance-adjusted bootstrap resampling permits

robust feature selection and generalizable multivariate model-

ing with a limited dataset by optimizing model parameters on

bootstrapped training/testing data subsets while accounting

for class imbalances within subsets at each bootstrap

repetition.

First, the optimal feature sets were selected from the avail-

able histogram and texture features by optimizing classifica-

tion performance across 50 bootstrapped samples with models

containing between 1 and 10 features. With each repetition,

patients were randomly divided into training and testing

groups with a 60%/40% split, and class imbalances in each

group (ie, a differing number of IDHMUT versus IDHWT or

IDHMUT-Codel versus IDHMUT-Noncodel cases) were cor-

rected by repeating instances from the underrepresented class.

Regression models were then generated at each iteration using

all combinations of available features to optimize prediction

accuracy on the training group. The optimal model order (ie,

number of features) was then selected by choosing the simplest

model (ie, lowest number of features) for which classification

area under the curve (AUC) in the testing group reached a

maximum or plateau.

This procedure was repeated using ADC, ADC � FA, and

ADC � dFA features for both IDH-mutation and 1p/19q codele-

tion classifications, generating an optimized feature set for each

case. Once optimal feature sets were determined for each classifi-

cation scheme, a final prediction model was generated by com-

puting model coefficients using imbalance-adjusted bootstrap re-

sampling with 1000 repetitions and taking the average regression

coefficients across repetitions. This process ensured that the clas-

sification model was not overfitting to any specific subset of pa-

tients used for training. Model performance was then quantified

in terms of AUC, sensitivity, and specificity in the testing group

with each bootstrap repetition, generating a distribution of each

parameter for each model. Model performance was evaluated ac-

cording to the mean and standard error of each metric across

repetitions.
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RESULTS
Quantitative Subgroup Differences
Sample ADC, FA, and dFA maps from each LGG subtype are

shown in Fig 2, and mean values across patients within each LGG

subtype are shown in Fig 3. For IDHWT versus IDHMUT, signifi-

cant differences were observed in ADC (1.18 � 0.16 versus 1.36 �

0.24 � 10�3mm2/s, P � .008), FA (0.22 � 0.05 versus 0.17 � 0.04,

P � .001), and dFA (0.19 � 0.05 versus 0.14 � 0.03, P � .001). For

IDHMUT-Codel versus IDHMUT-Noncodel, a significant differ-

ence in ADC was observed (1.20 � 0.14 versus 1.48 � 0.23 �

10�3mm2/s, P � .001). Insignificant differences were observed in

FA and dFA between IDHMUT-Codel and IDHMUT-Noncodel,

though both were slightly higher in the

IDHMUT-Codel group (FA: 0.18 � 0.04

versus 0.16 � 0.03, P � .16; dFA: 0.16 �

0.04 versus 0.13 � 0.01, P � .04). Com-

parisons among all other histogram and

texture features are shown in On-line

Tables 1 and 2.

Classification Feature Selection
Optimal feature combinations deter-

mined in the imbalance-adjusted boot-

strap resampling feature selection pro-

cess are listed in the Table.

Following feature selection, the

ADC-only IDH-mutation status classifi-

cation included only 1 histogram feature (75th percentile ADC);

the ADC � FA model contained 3 histogram features (2 ADC

features and 1 FA feature) and 3 texture features (1 ADC feature

and 2 FA features); and the ADC � dFA model included 2 histo-

gram features and 2 texture features (1 ADC and 1 FA feature

each).

For 1p/19q codeletion status classification, the ADC-only

model used 1 histogram feature (50th percentile ADC), the

ADC � FA model used 5 histogram features (3 ADC features and

2 FA features), and the ADC � dFA model used 4 histogram

features (2 ADC features and 2 dFA features).

FIG 2. Sample T2-weighted images with tumor segmentations (A), ADC maps (B), FA maps (C), and dFA maps (D) from each LGG molecular
subtype as well as mean ADC, FA, and dFA values (E) from these individual cases.

FIG 3. Boxplots showing mean ADC (A), FA (B), and dFA (C) values across LGG subtypes. Central
lines indicate median values, box edges indicate 25th and 75th percentiles, and whiskers extend to
the full data range, excluding outliers (which are indicated by plus signs). P values � 0.008 indicate
statistically significant differences to account for multiple comparisons.
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Classification Performance
For IDH mutation status classification, the ADC-only model

achieved AUC � 0.81 � 0.03, sensitivity � 0.84 � 0.06, and

specificity � 0.67 � 0.05. The ADC � FA model achieved AUC �

0.90 � 0.03, sensitivity � 0.80 � 0.07, and specificity � 0.80 �

0.04. The ADC � dFA model achieved AUC � 0.89 � 0.03, sen-

sitivity � 0.83 � 0.06, and specificity � 0.77 � 0.04.

For codeletion status classification, the ADC only model

achieved AUC � 0.83 � 0.03, sensitivity � 0.81 � 0.06, and

specificity � 0.73 � 0.04. The ADC � FA model achieved AUC �

0.94 � 0.02, sensitivity � 0.83 � 0.05, and specificity � 0.84 �

0.05. The ADC � dFA model achieved AUC � 0.89 � 0.03, sen-

sitivity � 0.76 � 0.07, and specificity � 0.79 � 0.05.

DISCUSSION
FA estimates obtained from 3-direction diffusion MR imaging

scans using DiffNet added discriminatory value in classifying

LGGs according to both IDH-mutation and 1p/19q codeletion

statuses in addition to ADC maps alone. Although conventional

FA values reconstructed from full DTI data provided marginally

better classification performance than dFA, both parameters

added to the performance of the ADC-only classification. This

feature indicates that DiffNet can aid in LGG classification when

only DWI is performed. Because DWI scans are included in most

standard MR imaging brain protocols, clinical value can be added

in many scenarios without the need for additional DTI scans. It

should be noted, however, that DTI is often performed to aid in

surgical planning and thus is available in many cases.

Several of our findings regarding conventional DTI analysis

for LGG classification are consistent with prior work. For exam-

ple, prior studies have reported lower ADC5,8,23-25 and higher

FA6,7 values in IDHWT LGG compared with IDHMUT gliomas.

Others have also reported significantly higher ADC7,26 and

slightly, but nonsignificantly, lower FA values7 in IDHMUT-Non-

codel versus IDHMUT-Codel tumors.

Other imaging features have previously been used to classify

gliomas into molecular subtypes. These include conventional im-

aging characteristics based on tumor location,27,28 contrast en-

hancement,27,28 margins,29,30 T2-FLAIR mismatch,31,32 and cal-

cification.33 Advanced techniques including perfusion MR

imaging,5,23,34,35 MR imaging spectros-

copy,28,36,37 and radiomic texture anal-

ysis22 have also demonstrated discrimi-

natory value. These features can

potentially be combined with FA and

ADC to further improve classification

performance. Additional improvements

may also be achievable through more so-

phisticated classification schemes than

the logistic regressions used in this work,

such as support-vector machines or ran-

dom forests.

ADC energy had positive regression

coefficients in the IDH-mutation classi-

fication, which indicates that uniform

ADC values within the tumor are asso-

ciated with IDHWT. On the other hand,

FA homogeneity and dFA energy (both

of which indicate parameter uniformity within the tumor) had

negative regression coefficients indicating negative associations

with IDHWT. These results further indicate that FA and dFA pro-

vide complementary information to ADC for LGG classification

and agree with prior study results showing higher ADC orderli-

ness and a lack of locally correlated FA values in IDHWT tumors.6

Our finding that increased ADC skewness is associated with

IDHMUT-Noncodel tumors is also consistent with prior work.6

However, these authors also found FA energy and correlation as a

significant predictor of IDHMUT-Noncodel. Neither these nor any

ADC, FA, or dFA texture features were selected in our final code-

letion-status classification models.

Notably, our codeletion-status classification models included

FA skewness and dFA skewness but in opposite directions (in-

creased FA skewness was associated with IDHMUT-Codel while

increased dFA skewness was associated with IDHMUT-Noncodel).

This is a surprising finding but may be due to a known FA-depen-

dent bias in dFA. It was shown previously that dFA has a negative

bias that gets larger as FA values increase,12 which affects the shape
of dFA distributions. This can alter distribution skewness and

thus associated relationships with molecular subtypes.

This study has limitations that should be discussed. This is a

retrospective, single-institution study with a relatively small sam-

ple size, and prospective validation on larger samples is necessary.

We have made DiffNet publicly available in hopes of facilitating

independent validation of our results at separate institutions. Fur-

thermore, although there is no technical difference between a sub-

sampled DTI dataset containing only 3 diffusion-encoding direc-

tions and a conventional DWI scan, prospective analysis

including only true DWI data is warranted.

CONCLUSIONS
DiffNet neural network– derived FA estimates based on 3-di-

rection DTI scans improve IDH-mutation and 1p/19q codele-

tion classification in LGGs compared with ADC values alone.

The application of the DiffNet neural network to conventional

DWI data may improve the prediction of LGG molecular

subtypes.

Features selected in the imbalance-adjusted bootstrap resampling process for each
classification schemea

Histogram and Texture Features

ADC ADC + FA ADC + dFA

Feature Weight Feature Weight Feature Weight
IDHWT vs

IDHMUT

ADC 75% �6.5 ADC 10% 109.4 ADC 10% 40.4
ADC 90% �71.4 ADC homogeneity 60.2
ADC energy 4363.0 dFA energy �1459.0
FA 75% 227.5 dFA skewness �6.45
FA contrast 24.2
FA homogeneity �346.9

IDHMUT-Codel
vs IDHMUT-
Noncodel

ADC 50% �10.7 ADC 50% �266.8 ADC 75% �62.9
ADC 25% 306.8 ADC 10% 40.0
ADC skewness �17.9 dFA 50% 202.9
FA 75% 460.9 dFA skewness 11.9
FA skewness �141.5

a For IDHWT vs IDHMUT, positive values indicate positive correlations with IDHWT. For IDHMUT-Codel vs IDHMUT-
Noncodel, positive values indicate positive correlations with IDHMUT-Noncodel. ADC units are in square millimeters/
millisecond.
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