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BACKGROUND AND PURPOSE: Previous studies have suggested that use of an artificial neural network
(ANN) system is beneficial for radiological diagnosis. Our purposes in this study were to construct an
ANN for the differential diagnosis of intra-axial cerebral tumors on MR images and to evaluate the
effect of ANN outputs on radiologists’ diagnostic performance.

MATERIALS AND METHODS: We collected MR images of 126 patients with intra-axial cerebral tumors
(58 high-grade gliomas, 37 low-grade gliomas, 19 metastatic tumors, and 12 malignant lymphomas).
We constructed a single 3-layer feed-forward ANN with a Levenberg-Marquardt algorithm. The ANN
was designed to differentiate among 4 categories of tumors (high-grade gliomas, low-grade gliomas,
metastases, and malignant lymphomas) with use of 2 clinical parameters and 13 radiologic findings in
MR images. Subjective ratings for the 13 radiologic findings were provided independently by 2
attending radiologists. All 126 cases were used for training and testing of the ANN based on a
leave-one-out-by-case method. In the observer test, MR images were viewed by 9 radiologists, first
without and then with ANN outputs. Each radiologist’s performance was evaluated through a receiver
operating characteristic (ROC) analysis on a continuous rating scale.

RESULTS: The averaged area under the ROC curve for ANN alone was 0.949. The diagnostic perfor-
mance of the 9 radiologists increased from 0.899 to 0.946 (P � .001) when they used ANN outputs.

CONCLUSIONS: The ANN can provide useful output as a second opinion to improve radiologists’
diagnostic performance in the differential diagnosis of intra-axial cerebral tumors seen on MR imaging.

Accurate noninvasive radiologic diagnosis is desirable
for appropriate treatment planning for brain tumors.

MR imaging is an imaging technique of choice for the di-
agnosis of brain tumors. The MR characteristics of each
type of brain tumor have been well documented in the ra-
diologic literature. However, MR diagnosis of brain tumors
is usually made subjectively, and its accuracy may be lim-
ited by the presence of atypical cases or by a radiologist’s
insufficient clinical experience. A computerized scheme
that is capable of providing objective information about an
image may aid radiologists in the classification of brain
tumors. An artificial neural network (ANN), which is a
computational model simulating neurons in the human
brain, has recently been applied to a variety of pattern rec-
ognitions and data classifications in medical imaging.
ANNs have been reported to improve the diagnostic per-
formance of radiologists in several fields.1-9 The objectives
of this study were to construct an ANN for the differential
diagnosis of intra-axial cerebral tumors on MR images and
to evaluate the effect of ANN outputs on radiologists’ diag-
nostic performance.

Materials and Methods

Case Selection
To train the neural network, we selected preoperative head MR im-

ages with supratentorial brain tumors from our hospital’s image data

base. The inclusion criteria were as follows: 1) new diagnosis of a

supratentorial brain tumor at our hospital between January 1996 and

January 2006; 2) histologic diagnosis; and 3) availability of a complete

set of precontrast T1-weighted images (T1WIs), T2-weighted images

(T2WIs), and postcontrast T1WIs. Cases with recurrent tumors were

excluded. Categories of brain tumor that were found in less than 11

cases were also excluded.

Data Base
On the basis of pathologic diagnoses, brain tumors were classified

into 4 groups: high-grade glioma (World Health Organization

[WHO] grade III or IV), low-grade glioma (WHO grade I or II),

metastatic brain tumor, and malignant lymphoma. In all patients, MR

imaging was done with 1.5T units (Magnetom Vision and Symphony;

Siemens, Erlangen, Germany). Precontrast and postcontrast T1WIs

(TR, 464 – 619 ms; TE, 11–26 ms) and precontrast T2WIs (TR, 2500 –

3491 ms; TE, 90 –105 ms) were performed. Other MR parameters

used were a 256 � 192 matrix, a 230 � 173-mm FOV, and a 5-mm

section thickness. Gadopentetate dimeglumine (Magnevist; Schering,

Berlin, Germany) at 0.1 mmol/kg body weight was administered in-

travenously for all postcontrast studies. None of the patients had re-

ceived previous radiation therapy.

Construction of Artificial Neural Network
We constructed an ANN with 15 input units for 2 clinical parameters

and 13 MR findings, 9 hidden units, and 4 output units corresponding

to the likelihood of each brain tumor (Fig 1). Two attending radiolo-
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gists (K.Y., F.M.) without knowledge of the pathologic results re-

viewed the images independently and graded their findings on 2 clin-

ical parameters (age and history of malignant tumor) and 13 MR

features (number, location[1], location]2], signal intensity on T2WIs,

edema, heterogeneity, hemorrhage, border definition, mass effect,

contrast enhancement, ring enhancement, tumor extent, and cyst for-

mation) according to Table 1. Originally, the rating scores were inte-

ger, nominal values depending on grade or location, but all inputs

used in this study for the ANN were linearly normalized to �0.9 to

0.9, which were empirically determined for the following technical

reasons: 1) the hyperbolic tangent (tanh) function (�1.0 to 1.0) was

used as a neuron output function of the ANN and 2) ANN is said to

learn moderate data, not extreme data such as 1.0.

Location(1) was scored on the basis of anatomic structure as ei-

ther the frontal, parietal, or temporal lobe (�0.9 in weight) or other

areas (0.9 in weight). Location(2) was scored as cortical layer (�0.9 in

weight), subcortical white matter (0 in weight), or other areas (0.9 in

weight). Signal intensity on T2WI was scored as �0.9, �0.45, 0, 0.45,

or 0.9 based on its relative intensity to the signal intensities of CSF,

gray matter, and white matter. Other features were scored as �0.9, 0,

or 0.9 based on their extent or severity (Table 1). When tumor en-

hancement was as hyperintense as fatty tissue, it was considered

marked.1,10 Ring enhancement of any size was considered to be pos-

itive. Tumors that were entirely enhanced were scored by a combina-

tion of positive contrast enhancement (0 or 0.9 in weight) but no ring

enhancement (�0.9 in weight). All of the raw scores of the MR pa-

rameters of each observer (a total of 252 readings) were fed into a

3-layer feed-forward neural network to map the MR imaging findings

to the corresponding pathologic results in a supervised manner to

train the ANN. The hyperbolic tangent (tanh) function was used as a

neuron output function. The ANN was trained based on a back-prop-

agation algorithm with use of the Levenberg-Marquardt method until

a convergence criterion of 0.01 or the maximum number of iterations

(10,000) was reached.11 We implemented a leave-one-out-by-case

method for training and testing the ANN using all clinical cases. With

this method, ratings for all but one of the cases in the data base were

used for training, and ratings for the left-out case were applied to

testing with the trained ANN. This procedure was repeated until every

case in the data base was used once as a testing case.

Observer Test
An observer test was performed 6 months after the 2 radiologists

provided subjective ratings for the MR features. For the observer test,

all cases in the data base were selected. Nine radiologists who did not

provide subjective ratings for MR features in advance participated in

the observer test. These 9 radiologists had 13, 10, 8, 8, 6, 5, 3, 3, and 3

years of experience in radiology practice, respectively. The first 3 were

attending neuroradiologists. The radiologists with 6 or more years of

experience were board certified in Japan, and the other radiologists,

including residents, had not yet received board certification.

Fig 1. Diagram of the basic structure of the ANN. Although
only 10 input units and 8 hidden units are shown for illus-
tration, the ANN consists of 15 input units and 9 hidden
units.

Table 1: 15 Parameters used as input data and their ratings

Rating score �0.9 �0.45 0 0.45 0.9
Age (y) 0–40 41–60 61–
Location (1) Frontal, parietal, or temporal lobe Other areas
Location (2) Cortical layer Subcortical white matter Other areas
History of malignancy (�) (�)
Number 1 2 3 �
SI on T2WI CSF CSF �, gray matter � Gray matter White matter White matter �
Edema Mild Moderate Marked
Heterogeneity Mild Moderate Marked
Hemorrhage (�) Equivocal (�)
Border definition Infiltrative Poorly circumscribed Well circumscribed
Mass effect Mild Moderate Marked
CE (�) Mild Marked
Ring enhancement (�) Equivocal (�)
Tumor extent Localized region Intermediate Extensive
Cyst formation (�) Equivocal (�)

Note:—SI indicates signal intensity; T2WI, T2-weighted image; CE, contrast enhancement.
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These observers were told that only 1 of the 4 possible diseases was

the correct diagnosis for each case, that normal cases or other diseases

were not included, and that the ANN outputs they received had been

obtained by use of 2 attending radiologists’ ratings as input data. The

observers were not informed about the distribution of each disease

category.

Before the test, 3 training cases that were not included in all ob-

jective cases were shown to observers to familiarize them with the

rating method and with the use of ANN output as a second opinion.

Initially, each observer was presented with MR images and clinical

parameters and rated the likelihood of each of the 4 types of intra-

axial cerebral tumors. The observer’s confidence level was repre-

sented on an analog continuous rating scale with a line-checking

method.2,3,5,9 Observers marked their confidence levels along the 4

lines on the score sheet. For the initial ratings, the observers used a

black ballpoint pen to mark their confidence levels along a 5-cm line.

Ratings of “probably negative” and “probably positive” were marked

above the left and right ends of the line, respectively. Subsequently,

the 2 ANN outputs with the 2 radiologists’ ratings were presented to

each observer. Figures 2 and 3 show examples of actual MR images

and graphs of corresponding ANN outputs used in this observer test.

In the second interpretation, observers used a pen to mark their con-

fidence levels along the same 4 lines if they changed those levels as a

result of ANN outputs.

Data Analysis
For data analysis, we scored the confidence level by measuring the

distance from the left end of the line to the marked point and con-

verting the measurement to a scale of 0 to 100.

Each radiologist’s diagnostic performance without and with ANN

output was evaluated by means of receiver operating characteristic

(ROC) analysis.12-20 Binormal ROC curves for diagnosing intra-axial

brain tumors were estimated with use of the Dorfman-Berbaum-Metz

multiple readers and multiple cases (DBM MRMC) algorithm developed

Fig 3. ANN output obtained on the basis of 2 radiologists’ ratings of MR features and
clinical information for the 2 cases shown in Fig 2. Each graph shows the largest output
values among the 4 categories corresponding to the correct diagnoses. A, Case 1: The
likelihood of high-grade glioma is very high. ANN led to the correct diagnosis. B, Case 2:
The likelihood of metastasis is approximately equivalent to high-grade glioma and malig-
nant lymphoma. ANN might fail to lead to the correct diagnosis.

Fig 2. MR images of 2 actual cases. A, Case 1: MR images
of a 44-year-old woman with a glioblastoma confirmed on
pathologic examination (WHO grade IV). Left image: T2WI
shows a heterogeneously hyperintense mass with central
necrosis and surrounding signal intensity abnormality likely
related to tumor extension and edema. Middle and right
images: Precontrast and postcontrast T1WIs show hemor-
rhagic mass and peripheral enhancement with central necro-
sis, characteristic of glioblastoma. B, Case 2: MR images of
a 62-year-old woman with proved metastatic brain tumor
from lung cancer. Left image: T2WI shows a cystic fronto-
parietal mass with mixed-aged hemorrhage. Middle and right
images: Precontrast and postcontrast T1WIs show a thin
layer of peripheral enhancement. Surgery disclosed
adenocarcinoma.
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by Metz et al.12-16 DBM MRMC is designed to determine the statistical

significance of the difference between ROC indices when the perfor-

mance of a diagnostic device is affected by both the cases analyzed and by

the observer.12-20 We defined confidence-rating data as an actual positive

result if the diagnosis was correct and as an actual negative result if the

diagnosis was of any other disease. For each observer and each interpre-

tation condition (with and without ANN output), we used a maximum-

likelihood estimation to fit a binormal ROC curve to the confidence-

rating data for all 4 possible categories in all cases. We combined data for

all diseases because of the small number of cases of each disease. The area

under the curve (AUC) then was calculated for each fitted ROC curve.

We determined the statistical significance of differences between AUC

values for each interpretation condition with the jackknife method by use

of DBM MRMC.12-16 Average ROC curves were generated to represent

the overall performance of the 9 observers by averaging the plots of their

individual ROC curves. We also evaluated the performance of the ANN

using ROC analysis. We obtained an ROC curve for detecting each par-

ticular disease in the presence of the other 3 diseases by examining the

output values from the single output unit that corresponded to the single

disease in question and by considering cases of a disease as “actual posi-

tive results” and cases of any other disease as “actual negative.”

We also calculated the sensitivity, specificity, and accuracy for each of

the 9 radiologists by using confidence-rating data. A case diagnosed cor-

rectly with the highest confidence rating was judged as 1 true-positive and

3 true-negative findings. Confidence-rating data in a case diagnosed cor-

rectly with the second-highest confidence rating was judged as 1 false-

negative, 1 false-positive, and 2 true-negative findings.

Another indication of observer performance was the number of

correctly diagnosed cases in which ANN output changed the observ-

er’s ranking. We ranked performance on a scale of 1 to 4, where 1

corresponded to a case that the observer diagnosed correctly with the

highest confidence rating, 2 corresponded to a case diagnosed with

the second-highest confidence rating, and so on. If ANN output im-

proved a ranking, such as a change from 2 to 1, the ANN affected the

diagnostic performance beneficially; conversely, if ANN output re-

duced a ranking, it had a detrimental effect. We analyzed the statistical

significance of the difference between the numbers of cases affected

beneficially and detrimentally using the Student t test for paired data.

Results
There were 126 brain tumors of 126 patients (61 male and 65
female, age range, 1– 85 years; mean age, 46.8 years) that met

our inclusion and exclusion criteria. A total of 58 patients had
high-grade gliomas, 37 had low-grade gliomas, 19 had meta-
static brain tumors, and 12 had malignant lymphomas.

On the 126 tumors, the average AUC value obtained with the
ANN output alone was 0.949, indicating high performance. Table
2 lists the AUC values for the ROC curves of the 9 radiologists
obtained without and with ANN output. AUC values for the 9
radiologists without ANN ranged from 0.840 to 0.947, and AUC
values with ANN ranged from 0.915 to 0.979. The average per-
formance of the 9 observers is shown by the ROC curves and
AUC values in Fig 4. The average AUC values for the 9 radiolo-
gists without and with ANN output were 0.899 and 0.946, respec-
tively. The average AUC values for both the board certified radi-
ologists and the radiologists not yet certified improved
significantly with the use of ANN output (P � .001, respectively).

The sensitivity, specificity, and accuracy for each of the 9
radiologists without and with ANN output are listed in Table

Fig 4. Average AUC values and binormal ROC curves for observers with and without ANN
output (averaged plot values for all readers). Those for ANN alone are also indicated. Note
that observer performance improves significantly with ANN output.

Table 2: AUC values for diagnostic accuracy of 9 radiologists without and with output of ANN

Observer Without ANN With ANN Difference P*
Precertification radiologists

A 0.891 0.945 0.054 �.001
B 0.840 0.938 0.098 �.001
C 0.850 0.950 0.099 �.001
D 0.897 0.947 0.057 �.001

Average 0.870 0.947 0.077
Board certified radiologists

E 0.935 0.972 0.037 �.001
F 0.887 0.915 0.028 �.001
G 0.965 0.979 0.015 �.001
H 0.917 0.940 0.023 �.001
I 0.911 0.922 0.010 �.001

Average 0.923 0.946 0.023
Overall average 0.899 0.946 0.047 �.001

Note:—AUC indicates area under the curve; ANN, artificial neural network;.
* Statistically significant with jackknife method by use of DBM MRMC (multiple readers and multiple cases algorithm developed by Metz et al12-16).
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3. The average values for both sensitivity, specificity, and ac-
curacy for the radiologists before board certification improved
significantly with the use of ANN output (P � .005, respec-
tively), whereas the average sensitivity, specificity, and accu-
racy for the board certified radiologists did not increase signif-
icantly (P � .19, P � .11 and P � .13, respectively).

Fig 5 shows the number of cases affected either beneficially
or detrimentally by ANN output for each radiologist. The
number of cases in which observers changed their ranking for
the correct diagnosis was 111 of 1134 (126 � 9) cases cumu-
latively. Observers changed their responses in 1.6% to 14.3%
of the 126 cases. The confidence level was affected beneficially
in 103 cases and detrimentally in 8 cases. The average numbers
of cases affected beneficially and detrimentally by ANN output
for all radiologists were 11.4 and 0.9, respectively. This differ-
ence was statistically significant (P � .001).

Discussion
The differential diagnosis of intra-axial cerebral tumors on
MR imaging requires 2 steps: extraction of MR features and
the subsequent merging of these features and available clinical
parameters into an overall diagnostic decision. In this study,
we selected 2 clinical parameters and 13 MR features as input

data and found that the ANN performed well (average AUC,
0.949). This shows that the ANN can consistently merge a
large amount of information on clinical parameters and MR
features of an intra-axial brain tumor as input data and
thereby learn the relationship between input and output data.

The diagnostic performance of the ANN alone was greater
than the average performance of the radiologists either with or
without ANN output (Table 2). We believe that a lack of famil-
iarity with the ANN was probably the reason why most radiolo-
gists were not able to make the best use of the output. The diag-
nostic performance of each radiologist improved with the use of
the ANN, especially for the radiologists who were not yet board
certified (Tables 2 and 3). This finding was in accordance with
several previous studies1-9 and indicates that the ANN may be
helpful in particular for readers with limited clinical experience. It
can be reasonably speculated that the ANN would help precerti-
fication radiologists who might fail to recognize important clini-
cal or MR features by suggesting they reconsider certain diagnos-
tic decisions through the careful merging of MR features and
clinical parameters. These interpretations are supported by the
results shown in Fig 5, in which significantly greater percentages
of cases benefited from the output (P � .001).

In our study, the ANN was trained by ratings of MR features
performed by 2 attending radiologists, and their outputs were
used as the second opinion in the observer test. When the ANN is
used in an actual clinical setting, radiologists will be required to
extract MR features themselves. Therefore, before applying the
ANN to a clinical reading, its effect should be further evaluated on
the basis of each observer’s own feature ratings.9

Because training of the ANN depends strongly on the data
base, a comprehensive data base that covers a wide distribu-
tion of patterns for each disease is desirable. However, for
uncommon diseases, it would be difficult to collect a suffi-
ciently large number of clinical cases at 1 institution. Thus, we
selected 4 types of relatively common intra-axial cerebral tu-
mors for differential diagnoses. These 4 types of tumors ac-
count for most of the intra-axial cerebral tumors that we en-
counter in our daily practice, with other types seen rarely.

We could not collect the same number of cases for each of the
4 types of tumors, but because we selected the cases from consec-
utive clinical cases according to the inclusion and exclusion crite-

Table 3: Sensitivity, specificity, and accuracy of 9 radiologists without and with output of ANN

Sensitivity (%) Specificity (%) Accuracy (%)

Observer Without ANN With ANN P* Without ANN With ANN P* Without ANN With ANN P*
Precertification radiologists

A 79.4 87.3 89.4 94.2 86.9 92.4
B 73.0 85.7 87.6 91.8 83.9 90.3
C 74.6 88.1 87.8 93.7 84.5 92.3
D 75.4 88.9 91.0 95.0 87.1 93.5

Average 75.6 87.5 �.005 89.0 93.7 �.005 85.6 92.1 �.005
Board certified radiologists

E 81.7 92.1 92.6 95.5 89.9 94.6
F 71.4 80.2 87.0 90.7 83.1 88.1
G 88.9 93.7 93.4 94.2 92.3 94.0
H 84.1 88.9 88.6 94.2 87.5 92.9
I 77.8 79.4 89.9 90.7 86.9 87.9

Average 80.8 86.8 0.19 90.3 93.1 0.11 87.9 91.5 0.13
Overall average 78.5 87.1 �.005 89.7 93.3 �.005 86.9 91.8 �.005

Note:—ANN indicates artificial neural network.
* Student t test for paired data.

Fig 5. The number of correctly diagnosed cases for which observers’ rankings changed
because of ANN output. Positive values indicate that ANN was beneficial, whereas
negative values indicate that ANN was detrimental. ANN output clearly improved the
performance.
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ria discussed in the Materials and Methods section, the number of
cases for each disease correlated to some degree with actual inci-
dence or prevalence. The only exception may be metastatic tu-
mors. Indeed, there were more cases of clinically diagnosed met-
astatic tumors that were defined by a combination of certain types
of clinical information (middle age or elderly and either current
incidence or history of cancer) and typical MR findings such as
clear border definition, ring enhancement, and multiplicity,
without pathologic confirmation. Because we selected only cases
confirmed on pathologic examination, these patients were not
included. Thus, it is possible that the metastatic tumors included
in our study tended to be rather atypical in MR appearance and
that the diagnostic performance of each reader for metastatic tu-
mors might have been underestimated.

In our study, we used precontrast and postcontrast T1WIs
and T2WIs only, rather than other types of images, such
as fluid-attenuated inversion-recovery images, diffusion-
weighted images (DWIs), MR spectroscopy, and perfusion-
weighted images (PWIs). It is known that apparent diffusion
coefficient (ADC) values derived from DWIs, relative concen-
trations of certain metabolites measured by MR spectroscopy,
and relative regional cerebral blood volume determined by
PWIs can provide useful diagnostic information for differen-
tiating brain tumors.21-24 However, ADC changes due to the
presence of cystic, necrotic, and hemorrhagic areas must be
carefully considered as well as the influence of artifacts caused
by inhomogeneous structures such as the skull base bone and
sinus air.25-27 This also applies to MR spectroscopy and PWIs,
and it remains to be solved for application to ANN.

In our study, observers were told that only 1 of the 4 possible
diseases was the correct diagnosis for each case and that normal
cases or other diseases were not included. This set-up was rather
unrealistic and might have introduced a bias into the results. For
this reason, as well as the limited number of cases used to train
and validate the ANN and lack of newer MR modalities such as
DWI and PWI, our study was of limited completeness. Collection
of a larger number of cases studied by more advanced MR tech-
niques would allow for inclusion of a wider variety of diseases,
better tumor characterization, and more precise evaluation of
ANN performance with a dedicated dataset, which will lead us to
building a clinically usable ANN.

As the present and previous studies have shown, ANN can
sometimes mislead a radiologist’s diagnosis.28,29 Nonetheless,
our results suggested that the ANN can make the classification
of intra-axial cerebral tumors more accurate and consistent.

In conclusion, our results revealed that the ANN may pro-
vide useful output as a second opinion to improve radiolo-
gists’ diagnostic performance in the differential diagnosis of
intra-axial cerebral tumors seen on MR imaging.
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