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Impact of Methodologic Choice for Automatic
Detection of Different Aspects of Brain Atrophy
by Using Temporal Lobe Epilepsy as a Model

C. Scanlon
S.G. Mueller

D. Tosun
I. Cheong
P. Garcia

J. Barakos
M.W. Weiner

K.D. Laxer

BACKGROUND AND PURPOSE: VBM, DBM, and cortical thickness measurement techniques are com-
monly used automated methods to detect structural brain changes based on MR imaging. The goal of
this study was to demonstrate the pathology detected by the 3 methods and to provide guidance as
to which method to choose for specific research questions. This goal was accomplished by 1)
identifying structural abnormalities associated with TLE with (TLE-mts) and without (TLE-no) hip-
pocampal sclerosis, which are known to be associated with different types of brain atrophy, by using
these 3 methods; and 2) determining the aspect of the disease pathology identified by each method.

MATERIALS AND METHODS: T1-weighted MR images were acquired for 15 TLE-mts patients, 14
TLE-no patients, and 33 controls on a high-field 4T scanner. Optimized VBM was carried out by using
SPM software, DBM was performed by using a fluid-flow registration algorithm, and cortical thickness
was analyzed by using FS-CT.

RESULTS: In TLE-mts, the most pronounced volume losses were identified in the ipsilateral hippocam-
pus and mesial temporal region, bilateral thalamus, and cerebellum, by using SPM-VBM and DBM. In
TLE-no, the most widespread changes were cortical and identified by using FS-CT, affecting the
bilateral temporal lobes, insula, and frontal and occipital lobes. DBM revealed 2 clusters of reduced
volume complementing FS-CT analysis. SPM-VBM did not show any significant volume losses in
TLE-no.

CONCLUSIONS: These results demonstrate that the 3 methods detect different aspects of brain
atrophy and that the choice of the method should be guided by the suspected pathology of the
disease.

ABBREVIATIONS: DBM � deformation-based morphometry; EMS � expectation maximization
segmentation; FDR � false discovery rate; FS � Freesurfer: FS-CT � FS–based cortical thickness;
FSL � FMRIB Software Library; FWHM � full width at half maximum; GM � gray matter; ICV �
intracranial volume; SPM � statistical parametric mapping; TLE � temporal lobe epilepsy; TLE-
mts � TLE–mesial temporal sclerosis; TLE-no � TLE–normal-appearing hippocampus; ULD �
unbiased large deformation; VBM � voxel-based morphometry; WM � white matter

The most commonly used methods for automated whole
brain structural analysis are VBM,1,2 DBM,3,4 and cortical

thickness methods.5,6 VBM is the most widely used method
to date, with more than 22 studies published in the area of
TLE alone.7-11 One of the main reasons for its popularity is
probably that VBM is relatively easy to perform, with freely
available software such as SPM (Wellcome Department of
Cognitive Neurology, London, United Kingdom) and FSL
(FMRIB Analysis Group, Oxford, United Kingdom). The first
step of so-called optimized VBM12 is to generate a probabilis-
tic GM map from the T1 gray-scale images by using a combi-
nation of voxel intensity and an a priori knowledge of the

spatial distribution of GM. GM maps are then registered to a
reference image. Registration to the reference image is based
on a low-dimensional spatial transformation that aligns global
differences but preserves local differences in GM distribution.
GM volume differences between groups are then assessed
voxel by voxel by using a general linear model.

DBM differs from VBM in 2 main aspects. First, the DBM
image is not segmented, so the information from the full gray-
scale brain is used in the analysis. Second, DBM registration is
high-dimensional, eliminating individual subject physiologic
and pathologic morphology differences. The anatomic differ-
ences then lie in the deformation fields that are required to
transform the subject’s brain. The more precise the registra-
tion, the more sensitive the method will be to detect subtle
systematic structural differences that may not be possible with
VBM.13,14 The downside of this technique, however, is that
DBM registration algorithms are not widely available and are
not as simple to implement as VBM. This is probably one of
the main reasons VBM is generally used over DBM. To our
knowledge, there are no whole brain DBM studies reported in
TLE.

Cortical thickness is commonly computed by analyzing the
3D reconstruction of the brain’s cortical surface from struc-
tural MR imaging. The freely available FS software (Martinos
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Center for Biomedical Imaging, Massachusetts General Hos-
pital, Boston, Massachusetts) is the most commonly used soft-
ware for that purpose. FS-CT is determined as the distance
from the GM/WM surface to the GM/CSF surface. The inter-
subject registration procedure is then based on alignment of
the cortical folding patterns as opposed to the voxel intensities
used for VBM and DBM. Although fluid warped images by
using the DBM approach also can very precisely match the
reference image, matching intensities may be less anatomically
meaningful than matching cortical folding patterns. This may
lead to a failure to align matching cortical regions across sub-
jects, resulting in a lack of power in localizing subtle cortical
differences in the voxel-based approaches.13 The drawback of
cortical thickness analysis is that it will not detect subcortical
abnormalities.

The overall aim of this study was to compare VBM, DBM,
and FS-CT regarding their ability to detect different types of
atrophy (subtle or microscopic atrophy versus mass or mac-
roscopic atrophy). TLE is associated with both types of atro-
phy and thus was chosen as a model to investigate this ques-
tion. Based on the appearance of the hippocampus, TLE can be
divided into 2 subgroups: TLE with MR imaging signs (hip-
pocampal atrophy and increased T2 signal intensity) of mesial
temporal sclerosis (TLE-mts) and TLE with normal MR im-
aging, characterized by a normal-appearing hippocampus
(TLE-no). In addition to the hippocampal volume loss, TLE-
mts is characterized by ipsilateral mesial and lateral temporal,
but also frontal, parietal, occipital, and cerebellar volume loss
as well smaller subcortical structures (basal ganglia and thala-
mus).9,15,16 Structural changes in TLE-no by using both VBM
and region of interest approaches however are more subtle
and less consistent.17-19,11 Cortical thickness measurements,
on the other hand, have shown widespread temporal and ex-
tratemporal cortical thinning.16 Due to differences in study
design, eg, measurement parameter investigated, study popu-
lation, field strength, and applied statistical analysis, it is not
possible to draw conclusions regarding the sensitivity of the
methods used to detect these abnormalities across studies.

The aim of this study was to compare the type of volume
loss detected by each method—SPM-VBM, DBM, and FS-
CT—and so to provide guidance on which method may be
best to adopt in answering specific research questions. We
expected that in TLE-mts, where macroscopic volume abnor-
malities occur, all 3 methods would be sensitive enough to
detect these large-scale volume changes (CT on the cortex
only). However, it was expected that in TLE-no DBM would
be able to detect subtle subcortical changes over VBM due to
its superior coregistration. We also hypothesized that FS-CT
would detect subtle cortical abnormalities, without macro-
scopic volume losses, not detected by either voxel-based
method.

Materials and Methods

Subjects
Participants in this investigation consisted of 15 patients with unilat-

eral TLE-mts (6 men, 9 women; mean age, 40.1 � 9.6 years), 14

patients with unilateral TLE-no (6 men, 8 women; mean age, 39.6 �

8.3 years), and 24 healthy controls (12 men, 12 women; mean age,

37.9 � 9.4 years). All patients were recruited during presurgical eval-

uation from the University of California, San Francisco and the Pa-

cific Epilepsy Program, California Pacific Medical Center. A cortical

thickness analysis including some of these subjects has previously

been published from our laboratory.16 Laterality of seizure onset was

made from prolonged ictal and interictal scalp video-electroenceph-

alogram telemetry. Nine TLE-mts patients had a left temporal onset,

and 6 TLE-mts patients had a right onset. In TLE-no, 7 patients were

diagnosed with left temporal onset, and 7 patients had a right tempo-

ral onset. Patients were categorized as TLE-mts or TLE-no based on

evidence of hippocampal atrophy and signal intensity changes on

their 4T MR imaging that used an epilepsy-specific protocol, and all

were reviewed by the same neuroradiologist (J.B.). Hippocampal

volumetry was used to confirm the presence (TLE-mts) or absence

(TLE-no) of significant hippocampal volume loss. Volumetry was

performed on high-resolution T2-weighted hippocampal images by

using a method of manual segmentation.20 There was a significant

mean difference (P � .001) between the age at which TLE-mts and

TLE-no patients developed epilepsy (TLE-mts, 5 � 6.6 years; TLE-no,

23 � 11.7 years) and also the duration of years patients have had

epilepsy (TLE-mts, 34.6 � 11.8 years; TLE-no, 17.1 � 9.8 years).

Data Processing
MR Imaging Acquisition. All subjects underwent MR imaging

with an MedSpec 4T system (Bruker MedSpec, Madison, Wisconsin)

controlled by a Trio console (Siemens, Erlangen, Germany) and

equipped with an 8-channel array coil (USA Instruments, Aurora,

Ohio). A volumetric T1-weighted magnetization-prepared rapid ac-

quisition of gradient echo sequence was acquired with the following

imaging parameters: 2300/3/950 ms (TR/TE/TI); flip angle of 7°; and

1 � 1 � 1-mm3 voxel resolution.

Image Processing
To combine left and right temporal onset patients in the analysis, MR

imaging data for patients were reassembled according to brain hemi-

sphere of seizure onset. Therefore, images of the subjects with right

TLE onset were left-right flipped so that all subject ipsilateral hemi-

spheres were on the left side. Because previous studies have revealed

GM asymmetries between the left and right hemispheres in the nor-

mal population,21 customized symmetrical templates were generated

for each analysis method from the same control subjects as described

below.

Voxel-based Morphometry
T1 images were intensity inhomogeneity corrected and segmented

into GM, WM, and CSF by using the EMS toolbox22 in SPM2 (http://

www.fil.ion.ucl.ac.uk/spm), running in Matlab 6.1 (MathWorks,

Natick, Massachusetts). The EMS toolbox was used as opposed to

standard SPM2 due to its superior bias field correction algorithm that

performs better with the more pronounced bias field of the 4T images.

Optimized VBM was then carried out on probabilistic GM maps ac-

cording to the optimized VBM protocol described in detail previ-

ously.12 To summarize, a study-specific symmetrical SPM GM tem-

plate was first created by averaging 31 normalized (first affine

followed by a nonlinear registration) control subjects (flipped and

unflipped) and smoothing by using an isotropic 8-mm FWHM

Gaussian kernel. All GM maps were then normalized to this symmet-

rical template first by using a 12-parameter affine transformation,

followed by a nonlinear transformation to minimize the residual

squared difference between the image and template.23 Voxel intensity

values were multiplied (modulated) by the Jacobian determinant (ie,
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the local expansion/contraction factor) derived from the deformation

map produced during spatial normalization, to preserve GM volume.

The modulated GM images were smoothed with an isotropic 8-mm

FWHM Gaussian kernel and used for statistical analysis.

Deformation-based Morphometry
The T1 images were skull-stripped, and intensity inhomogeneity was

corrected by using the bias field generated by EMS. A study-specific

symmetrical ULD template was created using the same 31 control

subjects as for the VBM template by using a fluid registration algo-

rithm.24 This template creation step is described in full elsewhere.25

To summarize briefly, it incorporates an unbiased approach in which

each subject’s flipped and nonflipped images are first simultaneously

deformed to create a symmetrical subject brain. Symmetrical subject

images are then simultaneously deformed iteratively into an average

ULD template brain. This technique avoids the bias toward a partic-

ular subject’s geometry introduced by selecting a single subject tem-

plate.26 The ULD template also contains sharper features than the

multisubject average intensity template as created in SPM.

Each subject’s T1 image is first registered to the template with an

affine 12-parameter transformation. Subject brains are then nonlin-

early deformed to the template by using a fluid-flow warping tech-

nique.25 The Jacobian determinants of the deformation fields are used

to gauge the local volume differences at each voxel between the indi-

vidual image and the template. Each subject Jacobian map is

smoothed with an isotropic 8-mm FWHM Gaussian kernel.

Cortical Thickness
Analysis of cortical thickness was carried out by using FS, version 3.05

(https://surfer.nmr.mgh.harvard.edu). Detailed descriptions of this

method have already been published27,28 but are briefly summarized

here. Based on a linear combination of voxel intensities and local

geometric constraints, the cerebral WM is first segmented. The WM is

divided into 2 hemispheres, and the brain stem and cerebellum are

removed. Tessellation is then performed to produce a triangle-based

mesh of the WM surface and refined to alleviate the voxel-based na-

ture of the initial curvature. The WM surfaces are deformed outward

to generate the pial (GM/CSF intersection) surface. Topologic defects

in the surface are corrected by using an automated topology fixer.

Visual quality checks are performed and inaccuracies are manually

edited and corrected by reprocessing. The cortical surface is spheri-

cally inflated so that the entire cortical surface is exposed, including

deep tissue inside the sulci. Using combined information from the

pial and WM surfaces, cortical thickness is calculated at each vertex.

To perform surface-based analysis of cortical thickness between

groups, a custom symmetrical template is constructed by using data

from the same 31 control subjects as for VBM and DBM processing.

To create a surface template, an average curvature map is created by

averaging subject gyral and sulcal curvature patterns. Each study sub-

ject’s surface is then registered to the template, and the deformation is

guided by the cortical features of the template. Thickness data from

each subject are then smoothed by using a 20-mm FWHM 2D Gauss-

ian kernel and mapped to an average surface. This average surface is

the average of all study subjects for the visualization of results and

should not be confused with the template described above.

Statistical Analysis
Linear regression was performed to determine the effect of “group”

(patient or control) on the measurement parameter at each voxel/

vertex. ICV was entered as a nuisance variable for VBM analysis only

because this was already accounted for during the initial affine regis-

tration of DBM and cortical thickness is not confounded by ICV.29

Contrasts were defined to detect differences at each voxel/vertex be-

tween 1) controls and TLE-mts and 2) controls and TLE-no. Given

the large number of voxels/vertices being tested in each analysis, it is

necessary to correct for multiple comparisons to reduce the probabil-

ity of obtaining false-positives (type I errors). The most commonly

used methods, such as random-field theory and FDR are dependent

on the number of voxels/vertices tested. Given that SPM-VBM and

DBM images contain approximately 2 million brain voxels, whereas

FS provides cortical thickness information at 320,000 vertices on av-

erage, these methods of multiple comparison correction make it dif-

ficult to fairly compare results across the morphologic methods used

in this study. Permutation analysis is a nonparametric technique that

has been demonstrated to be an effective multiple comparison cor-

rection technique in neuroimaging30 and is also independent of the

number of voxels/vertices tested. A null distribution for the effect of

group at each voxel/vertex was constructed by using 10 000 random

permutations of the data. For each test, the subject’s diagnosis was

randomly permuted, and t tests were conducted to identify voxels

more significant than P � .05. The group differences more significant

than P � .05 were computed for the real experiment and for the

random assignments. Finally, a ratio, describing the fraction of the

time the suprathreshold group difference was greater in the random-

ized maps than the real effect (the original labeling), was calculated

and a new P value was reported for the significance at that point.

Voxelwise analysis was conducted by using FSL’s “randomize” tool

(FMRIB Software Library, version 4; http://www.fmrib.ox.ac.uk/fsl).

FS-CT analysis was conducted with the same parameters at each ver-

tex by using FS’s statistical analysis tool.

Results

TLE-mts versus Controls
Figure 1 displays GM volume loss (SPM-VBM), volume loss
(DBM), and cortical thinning (FS-CT) in TLE-mts com-
pared with controls after permutation correction. Both SPM-
VBM and DBM show 1 large cluster of volume losses extend-
ing from the ipsilateral hippocampus and mesial temporal
lobe to bilateral thalamus, brain stem, and cerebellum. In
the SPM-VBM analysis, this cluster extends to the lateral
temporo-occipital cortex (ipsilateral � contralateral). FS-CT
demonstrates 1 cluster of cortical thinning of the ipsilateral
temporo-occipital-parietal region. Table 1 outlines the size of
the significant clusters and the maximum t-statistic. The larg-
est cluster was found by using VBM analysis; however, DBM
revealed the largest cluster t-statistic.

TLE-no versus Controls
Figure 2 shows volume loss (DBM) and cortical thinning
(FS-CT) in TLE-no compared with controls after permutation
correction. SPM-VBM analysis revealed no changes between
groups after correction for multiple comparisons. FS-CT
showed a large cluster of bilateral cortical thinning in both
temporal lobes extending to the frontal, occipital, and parietal
lobes bilaterally. DBM demonstrated 2 significant clusters.
The first cluster included the ipsilateral temporal lobe, extend-
ing to the brain stem and cerebellum. The second cluster in-
cluded the bilateral superior frontal cortex, pre- and post-
central cortex, and superior parietal cortex. Table 2 outlines
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the size of the significant clusters and the maximum t-statistic.
Figure 3 shows SPM-VBM, DBM, and FS-CT results after FDR
correction for both TLE-mts and TLE-no versus controls.

Discussion
In this study, we aimed to investigate the aspects of disease
atrophy detected by 3 different automated methods of brain
morphometry. There were 2 main findings: 1) In TLE-mts,
voxel-based methods SPM-VBM and DBM identified the
most pronounced volume losses in the ipsilateral hippocam-
pus and mesial temporal region, the ipsi- and contralateral
thalamus, and cerebellum. FS-CT showed cortical thinning
in the ipsilateral temporo-occipital region. 2) SPM-VBM

showed no significant volume loss in TLE-no. In contrast,
DBM detected a region of ipsilateral temporal, bilateral supe-
rior frontal, and cerebellar volume loss. The most widespread
changes covering the bilateral temporal, frontal, occipital, and
parietal cortex were identified by using FS-CT. Based on these
findings, we conclude that VBM, DBM, and FS-CT detect dif-
ferent types of atrophy and thus that the choice of the volume-
try method should be guided by the knowledge about the dis-
ease process.

TLE-mts
Significant findings after FDR correction were consistent
with previous studies, the clinical implications of which

Table 1: TLE-mts versus controls

Method Region Cluster Size Cluster t-Statistic
Freesurfer Ipsilateral temporo-occipital 20 414.11 mm2 (70 691 vertices) 6.139
DBM Bilateral mesial temporal lobe, bilateral thalamus, basal ganglia,

subcortical white matter, cerebellum, and brain stem
259 230 mm2 (259 230 vertices) 7.529

VBM Ipsilateral mesial temporal lobe, bilateral thalamus, and ipsilateral
basal ganglia

282 288 mm3 (282 288 voxels) 5.693

Ipsilateral temporal and bilateral occipital cortex
Cerebellum and brain stem

Note:—Clusters representing significant differences between controls and TLE-mts for each method after correction for multiple comparisons by using permutation testing.

Fig 1. Controls versus TLE-mts. A, VBM-SPM GM differences. B, DBM Jacobian differences. C, FS-CT differences between groups. All results corrected for multiple comparisons by using
permutation analysis (P � .05).
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have been demonstrated previously and are not discussed
here.9,15,16,18,31,32 The results differ when permutation analysis
was used to correct for multiple comparisons instead of the
more commonly used FDR approach. These methods of mul-
tiple comparison correction are based on different principles
(see Statistical Analysis). The permuted results were used to
compare between methods because this method is indepen-
dent of the number of voxels/vertices tested and therefore rep-
resents a more unbiased approach.

When comparing across the methodologies, the most

prominent volume changes in TLE-mts were demonstrated
below the cortex and identified by using both SPM-VBM
and DBM. Both methodologies detected the pathology be-
cause the observed changes are macroscopic, and the ability
of DBM to detect subtle morphologic changes is not essen-
tial. In addition, however, the SPM-VBM cluster extended
to the ipsilateral temporal-occipital and contralateral oc-
cipital cortex that was not detected by DBM or by previous
VBM studies. Although this cortical finding may seem
counterintuitive when DBM registration is theoretically

Fig 2. Controls versus TLE-no. A, VBM-SPM GM differences. B, DBM Jacobian differences. C, FS-CT differences between groups. All results corrected for multiple comparisons by using
permutation analysis (P � .05).

Table 2: TLE-no versus controls

Method Region Cluster Size Cluster t-Statistic
Freesurfer Ipsilateral inferior and lateral temporal lobe;

insula, posterior, and superior frontal lobe;
and lateral and medial occipital region

62 071 mm2 (70 691 vertices) 7.679

Contralateral inferior and lateral temporal lobe;
insula, posterior, and superior frontal lobe;
and lateral and medial occipital region

58 961 mm2 (66 554 vertices) 4.883

DBM Cerebellum, brain stem, and ipsilateral
temporal lobe

74 453 mm3 (74 453 voxels) 5.281

Bilateral superior frontal cortex, pre- and
postcentral cortex, and superior pariental
cortex

54 397 mm3 (54 397 voxels) 4.572

Note:—Clusters representing significant differences between controls and TLE-no for each method after correction for multiple comparisons by using permutation testing. No significant
clusters were found using the VBM method.
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more accurate than SPM-VBM, there are several possible
explanations. 1) An increased intersubject variance in the
cortical region by using DBM-SPM-VBM coregistration
corrects macroscopic volume effects but maintains most of
the individual morphologic differences at the gyral level.
DBM, as used in this study, corrects most of the physiologic
and disease-related interindividual differences at the gyral
level, resulting in a higher between subject variability of the
transformation matrix and thus a lower power to detect
disease-related differences. 2) Although corrected for head
size, the resulting deformation matrix of SPM-VBM con-
tains the affine and the nonlinear transformations, whereas
the affine coregistration is not integrated in the DBM trans-
formation matrix. This would suggest that the significant
cortical cluster may be a reflection of the volume decrease
in the deep WM of the temporal lobe.

FS-CT detected a region of cortical thinning in the tem-
poro-occipital lobe also detected by SPM-VBM. However,
volume loss detected by SPM-VBM and DBM mostly af-
fected the hippocampus and subcortical structures that are
not part of the FS-CT analysis. These results suggest that
TLE-mts is a disease with mostly macroscopic volume loss
affecting a large region predominantly including the ipsi-
lateral hippocampus, thalami, and cerebellum, and extend-
ing to the lateral temporal cortex, which may be detected
best by using VBM analysis. Cortical thinning is present in
TLE-mts but, at least in this analysis, is less prominent than
the subcortical volume losses that might suggest that the
cortical thinning is secondary to the subcortical atrophy.

TLE-no
The 4T VBM findings presented here were in agreement with
previous VBM studies at 1.5T, demonstrating no significant
findings after FDR correction.11,19 The DBM findings were
consistent with some previous region of interest volume anal-
yses that show ipsilateral temporal lobe atrophy.17,18 The FDR
corrected cortical thickness results for TLE-no have been re-
ported previously and discussed by our laboratory,16 but they
have not been demonstrated elsewhere.

In the permutation analysis of TLE-no patients versus con-
trols, DBM found significant changes affecting the ipsilateral
temporal lobe, cerebellum, and brain stem in 1 cluster, and the
superior frontal and parietal cortex in a second cluster. No
significant volume loss was detected by using SPM-VBM.
This suggests that the fluid-registration algorithm used by
DBM may be better suited to detect the subtle volumetric ab-
normalities associated with this disease type than the spatial
basis function algorithm implemented in SPM2. A region of
interest–based DBM study focused on the thalamus has pre-
viously been carried out on the same study subjects in our
laboratory.33 This study demonstrated a subtle volume loss in
this region. If it is necessary to study subcortical structures in
disease types with very subtle volume changes such as TLE-no,
it may be beneficial to have an a priori hypothesis to avoid
having to correct for multiple comparisons across the whole
brain, where such a finding may not survive a stringent
correction.

FS-CT analysis revealed the most widespread cortical thin-
ning in TLE-no affecting the bilateral temporal lobes, insula,

Fig 3. Controls versus TLE-mts and controls versus TLE-no after FDR � .05 correction for multiple comparisons. A, VBM-SPM GM differences. B, DBM Jacobian differences. C, FS-CT
differences between controls and TLE-mts. D, VBM-SPM GM differences. E, DBM Jacobian differences. F, FS-CT differences between controls and TLE-no.
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and frontal and occipital lobes. Only the thinning of the supe-
rior frontal cortex also was detected by DBM. The reason for
this may be physiologic, methodologic, or a combination: 1)
Physiologic: Subtle thinning of the cortex associated with
TLE-no is not detected through macroscopic voxel-based vol-
ume analysis. The nature of the abnormalities associated with
TLE-no may be primarily confined to the thinning of the ce-
rebral cortex, subtle effects of which may be diluted in analysis
of volume (a combination of thickness and surface area). In
TLE-mts, however, the cortical changes are large and hence
can be detected through analysis of either volume or FS-CT. 2)
Methodologic: Image registration methods of matching gyral
patterns help to precisely colocalize identical cortical regions
of subjects without sacrificing the details contained in the un-
derlying measure of interest (ie, FS-CT). Matching intensities,
as with SPM-VBM and DBM, is less anatomically meaningful
and may lead to a less precise colocalization of subject cortical
region and a decrease in the power to detect structural changes
in a disease group whose cortical abnormalities are already
quite subtle. In addition, the 3D smoothing step used by the
voxel-based methods leads to a blurring of tissue across neigh-
boring banks of a sulcus that are not anatomically related and
thus could again lead to a reduced ability to detect cortical
abnormalities. FS smoothing however is performed across the
2D inflated brain surface, preserving the relationship between
neighboring sulcal and gyral structures.

Limitations
There are several methodologic differences between the tech-
niques that have not been controlled: 1) The methods use
different segmentation techniques (probabilistic in SPM-
VBM versus binary in FS-CT). 2) Each method requires
smoothing for statistical analysis, but because of the different
smoothing approaches, it is difficult to determine a compara-
ble smoothing kernel size for surface-based and voxel-based
methods. Therefore, in this study, recommendations were
taken from previous studies for both voxel- and surface-
based smoothing kernel sizes. 3) A more recent SPM toolbox,
DARTEL (compatible with SPM, versions 5 and higher) in-
cludes an improved atlas creation and registration method
that adopts a diffeomorphic registration algorithm that is sim-
ilar to the DBM approach used in this study.34 Theoretically,
this would lead to more comparable results between VBM-
SPM and DBM and is currently being tested in our laboratory.
4) Effort was made to remove brain dura during the skull
stripping process before DBM analysis, particularly at the
most superior part of the interhemispheric fissure. However,
this was difficult to accomplish in some subjects without the
removal of cortical voxels. Although the percentage of subjects
with some remaining dura between controls and TLE-no sub-
jects was equal, it cannot be disregarded that the superior fron-
tal cortical cluster may be due to this artifact and should be
considered a limitation of this method. 5) None of the 3 meth-
ods depicts the “whole truth,” ie, just because a brain region
seems normal in a VBM or cortical thickness analysis, it can-
not be concluded for sure that this structure is not affected by
the disease process but only that it is less likely to be affected by
the type of pathologic abnormalities to which the chosen
method is particularly sensitive.

Conclusions
The findings of this study show that each of the 3 methods
detects different types of structural abnormalities and that the
choice of the method has to be guided by the nature of the
suspected pathology. Some of the differences are obvious be-
cause they are inherent to the method, eg, FS-CT is not suited
to detect subcortical abnormalities because these structures
are not part of the cortex. However, the results also can differ
in structures that are assessed by all 3 methods. Based on the
findings in this study, we conclude that SPM-VBM and DBM
will detect cortical and subcortical abnormalities in diseases
associated by macroscopic volume losses and that FS-CT will
detect the cortical component. In diseases without macro-
scopic volume losses, FS-CT is the optimal method to detect
cortical abnormalities. DBM is the optimal method to detect
subcortical abnormalities, but DBM also will pick up some of
the cortical pathology in these diseases.
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