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ORIGINAL RESEARCH
ADULT BRAIN

A Comparison of Global Brain Volumetrics Obtained from CT
versus MRI Using 2 Publicly Available Software Packages

S.W. Fielden, ““'D. Beiler, ““K.A. Cauley, and “*V. Troiani

ABSTRACT

BACKGROUND AND PURPOSE: Brain volumetrics have historically been obtained from MR imaging data. However, advances in CT,
along with refined publicly available software packages, may support tissue-level segmentations of clinical CT images. Here, brain
volumetrics obtained by applying two publicly available software packages to paired CT-MR data are compared.

MATERIALS AND METHODS: In a group of patients (n =69; 35 men) who underwent both MR imaging and CT brain scans within
12months of one another, brain tissue was segmented into WM, GM, and CSF compartments using 2 publicly available software
packages: Statistical Parametric Mapping and FMRIB Software Library. A subset of patients with repeat imaging sessions was used
to assess the repeatability of each segmentation. Regression analysis and Bland-Altman limits of agreement were used to determine
the level of agreement between segmented volumes.

RESULTS: Regression analysis showed good agreement between volumes derived from MR images versus those from CT. The corre-
lation coefficients between the 2 methods were 0.93 and 0.98 for Statistical Parametric Mapping and FMRIB Software Library,
respectively. Differences between global volumes were significant (P <.05) for all volumes compared within a given segmentation
pipeline. WM bias was 36% (SD, 38%) and 18% (SD, 18%) for Statistical Parametric Mapping and FMRIB Software Library, respectively,
and 10% (SD, 30%) and 6% (SD, 20%) for GM (bias * limits of agreement), with CT overestimating WM and underestimating GM
compared with MR imaging. Repeatability was good for all segmentations, with coefficients of variation of <10% for all volumes.

CONCLUSIONS: The repeatability of CT segmentations using publicly available software is good, with good correlation with MR imaging.
With careful study design and acknowledgment of measurement biases, CT may be a viable alternative to MR imaging in certain settings.

ABBREVIATIONS: BV = brain volume; CNR = contrast-to-noise ratio; DARTEL = Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra;

ICV = intercranial volume; LoA = limits of agreement; SPM = Statistical Parametric Mapping

D etailed analysis of brain volumetric data has been a topic of
major interest during the past several decades. Abnormalities
of global brain volume (BV) have been identified in multiple scle-
rosis,’! amyotrophic lateral sclerosis,> and age-related dementia,’
being just a few examples. Beyond these examples of clinical popu-
lations with known brain atrophy, more subtle differences in corti-
cal anatomy as they relate to typical and atypical developmental
processes’ and individual differences in personality traits® have
been studied.
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The exquisite soft-tissue contrast of MR imaging has given
rise to a number of publicly available software platforms that ena-
ble tissue segmentation and statistical analysis of imaging data,
with MR imaging thus firmly establishing itself as the criterion
standard imaging technique for brain volumetric analysis.’®
However, MR imaging does have several important limitations:
Obtaining high-quality images in the presence of increasingly
common implants remains challenging, MR imaging has high
cost, and long scan times lead to higher rates of artifact-corrupted
images unsuitable for analysis due to poor subject compliance.
Compared with MR imaging, CT is much more affordable and
available for both patients and imaging departments. It is also less
subject to motion artifacts due to its acquisition speed.
Historically, prospective neuroimaging research studies using CT
have been difficult to justify due to the unavoidable use of ioniz-
ing radiation and the limited data obtainable. However, given the
nature of CT as a first-line diagnostic tool, the number of CT
images available for analysis from existing clinical data—on both
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a patient and population level—greatly outnumbers the number
of MR images. Therefore, CT appears highly suitable for in vivo
study of the brain, and retrospective analysis of CT images that
already exist within electronic health records may serve as a use-
ful platform for discovery.

Group-level analysis of brain imaging data for research pur-
poses involves several preprocessing steps, including segmentation
of different tissue types (GM, WM, CSF). Any successful tissue seg-
mentation relies on a sufficient contrast-to-noise ratio (CNR)
between =2 tissues to discriminate tissue boundaries. Supported
by the relatively strong contrast between parenchyma and CSF and
between parenchyma and bone, segmentation of total brain vol-
umes from CT images has been accomplished.9’10 However, brain
tissue segmentation into GM and WM was considered nonviable
for many years due to the low CNR between those tissues. The
steady improvement in CT technology and image quality has
recently led to several groups taking a second look at segmenting
CT images using such diverse approaches as intensity-threshold-

ing,ll,IZ d)13—15

atlas-base and learning-based methods."®

Despite this growing interest in CT image analysis and segmen-
tation, validation remains challenging and rare; the administration
of ionizing radiation to a volunteer cohort is difficult to justify on
ethical grounds, and, to our knowledge, there has been only 1
report of a paired, within-subject comparison of volumes seg-
mented from CT against those segmented from MR imaging.
In that study, SPM12 (http://www filion.uclac.uk/spm/software/
spm12) was adapted for CT segmentation, and the results were
compared with MR imaging segmentations obtained from
FreeSurfer (http://surfer.nmr.mgh.harvard.edu). The brain volumes
derived from the 2 modalities were found to be in good agreement,
though the total number of patients with paired data was small (10
and 25 patients in 2 study arms)."’ Like Statistical Parametric
Mapping (SPM), FMRIB Software Library (FSL)"” is a commonly
used, open-source software library that includes an image-process-
ing toolbox designed for analysis of MR images of the brain (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). Despite being developed for MR
imaging, FSL has been used to obtain volumes from brain-extracted
head CT images.'®" The goal of the current study was to compare
volumes obtained from paired CT and MR imaging data in a broad
patient cohort using these 2 publicly available software packages.

MATERIALS AND METHODS

Subjects

This study was reviewed and approved by Geisinger institu-
tion’s review board. Data were identified for subjects who
had undergone CT and high-resolution MR imaging within
12 months of one another. High-resolution MR imaging
sequences included MPRAGE, echo-spoiled gradient echo,
and fast-spoiled gradient recalled. Patients were referred for
stroke, hemorrhage, aneurysm, and tumor. Subjects were
excluded if they were scanned with a nonroutine protocol (ie,
a pediatric protocol).

Data Acquisition

All noncontrast head CTs were acquired in an axial or helical
mode, 120-140 kV(peak), and modulated milliampere, mini-
mum, 50, and maximum, 290 mA, acquired from the foramen
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magnum through the vertex with a standard 512 x 512 matrix,
24-cm FOV at a 5.0-mm section thickness (Online Supplemental
Data). MR images varied more considerably across scanners, but
generally, scans were acquired as inversion-prepared 3D fast gra-
dient recalled-echo sequences, with in-plane resolutions of 0.8—
1.0mm and sufficient 0.8- to 1.2-mm axial slices to cover the
entire brain (Online Supplemental Data).

Image Processing and Analysis

Preprocessing an MR Image File. MR images were converted from
DICOM to NIfTT format. Files were then visually inspected to iden-
tify any artifacts or gross abnormalities that would prevent accurate
processing. These images (1 =7) were removed from the pipeline
and excluded from further processing. We then completed standard
preprocessing steps using Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL in SPM) or FAST
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fast)*’, described below.

Preprocessing CT Image Files. A series of steps were completed on
CT images to adjust image parameters to facilitate image segmenta-
tion. Upper and lower threshold limits were first applied to the
image using fslmaths (https://open.win.ox.ac.uk/pages/fslcourse/
practicals/intro3/index.html) functions in the FSL software package
(upper limit, 100; lower limit, —15). These thresholds were chosen
after some preliminary experiments and were generally found to
sufficiently retain tissue distinctions and boundaries, while elimi-
nating much of the skull and extraneous noise. The origin point for
each scan was adjusted to the anterior commissure using SPM. If
the image quality was poor, too “grainy,” or there was a sizable
morphologic obstruction that made it difficult to identify the ante-
rior commissure, the image file was excluded from further analysis
(n=135). Images were then run through the FSL Brain Extraction
Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET; BET) with a frac-
tional intensity threshold of 0.01 to remove any skull and nonbrain
tissue that remained after the threshold adjustment.”’ After BET, all
files were visually inspected to identify any artifacts or gross abnor-
malities that would prevent accurate voxel-based morphometry
processing. These images were also removed (1 =49) from the pipe-
line and excluded from further processing. The remaining 260
images were run through the voxel-based morphometry or FAST
pipelines, outlined below.

Voxel-Based Morphometry Pipeline

Global GM, WM, CSF, BV (BV = GM + WM), and total inter-
cranial volumes (ICVs = GM + WM + CSF) were estimated for
CT and MR images using the DARTEL toolbox in SPM 12.*
First, GM, WM, and CSF segmented images were generated in
NIfTT format in native space for both MR imaging and CT image
files. In each segmented image, the numeric value of each voxel
was an estimation of the fraction of the volume of the voxel rep-
resenting the corresponding tissue type, ranging between 0 and 1.
To compute a specific tissue volume, we discarded voxels with
values of <0.2 (ie, noisy voxels) from the segmented image; the
remaining voxels were summed and multiplied by the volume of
a voxel in milliliters to represent whole-brain tissue volume.”
Normalization was then accomplished using DARTEL. The pro-
cedure first rigidly transforms each subjects GM and WM
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segmented images to Montreal Neurological Institute space and
then uses the files for all subjects to create a mean GM template in
Montreal Neurological Institute space using an iterative procedure.”
This procedure also yields subject-specific flow-field files that
encode the deformation that occurs during the template creation.
Then, the native space GM file, the flow-field file, and the mean
GM template are processed together to generate a subject-specific
normalized-modulated GM image in Montreal Neurological
Institute space. The modulation procedure ensures that the whole-
brain and regional GM volumes are preserved (relative to the native
GM image) postnormalization.

To determine the optimal threshold for the normalized-
modulated image, we used a custom procedure. This procedure
systematically alters the threshold of the normalized modulated
image and, at each threshold value, computes voxel values by fol-
lowing the same steps used for estimating the native space GM
volume. The threshold value at which the absolute difference
between the native space and normalized modulated image is
minimized is then chosen as the optimal threshold. In the nor-
malized modulated file, all voxels with a value below this optimal
threshold are zero.

FAST Pipeline

The use of FAST for CT segmentation has been described else-
where.'® Briefly, the T1-weighted image-type setting was used, and
the number of segmentation classes was set to 3. The Markov ran-
dom field, iterations, and bias field smoothing values were set to
0.1, 4, and 20.0, respectively, with partial volume segmentation out-
put. Volumes were extracted using the fslstats function (https://
open.win.ox.ac.uk/pages/fslcourse/practicals/intro3/index.html).

Data Pruning

We additionally ran a cluster analysis using R statistical and com-
puting software (http://www.r-project.org) to identify any out-
liers, which were then excluded from the final data set. The
analysis identified 16 images with GM, WM, and/or CSF volumes
that fell outside the expected range. The initial data pull included
images from 8 CT and 7 MR imaging scanners. To reduce possi-
ble variation due to scanner make/manufacturer, data were
included only from resources that had scanned at least 10
patients, reducing analysis to 3 CT and 3 MR imaging scanners.
After we removed the inappropriate protocols, failed analysis,
outliers, and low resource counts, the final data set included 69
distinct individuals with successfully segmented paired CT/MR
imaging data from both FSL and SPM.

Statistics

Data are presented as median (interquartile range) or mean (SD)
as appropriate. To determine whether scanner-specific parame-
ters globally affect segmentation results, we compared ICV, BV,
and GM and WM volumes across each MR imaging-CT scanner
combination using 1-way ANOVA with Tukey post hoc testing
between groups. To ensure that no bias was introduced from MR
image contrast, we compared segmentation results between con-
trast-enhanced MR images and those without contrast. Several
patients in the final cohort had repeat scans (8 for MR imaging,
165 for CT). Using these, we compared the repeatability of

FSL SPM

FIG 1. Brain segmentation results. Brain-extracted MR imaging and CT
(left) from a 41-year-old male patient at approximately the same sec-
tion locations, with corresponding segmentation results from FSL and
SPM on the right. Visually, both FSL and SPM perform well on MR
imaging data, with SPM exhibiting a smoother appearance for seg-
mentation results compared with FSL. Colors in segmentations repre-
sent GM (blue), WM (green), and CSF (red).

segmentation results using the coefficient of variation. Regression
analysis and Bland-Altman limits of agreement were used to
determine the level of agreement between segmentation measures
derived from the 2 imaging modalities. When >1 image was
available for a subject (CT or MR imaging), 1 image was chosen
at random for comparison. T tests were used to compare average
volumes within each pipeline. For all tests, P<<.05 was consid-
ered significant.

RESULTS

A typical segmentation result from paired MR imaging—CT imag-
ing from a 41-year-old patient is shown in Fig 1. As expected, the
segmentation of the MR image is of high quality, with good gray,
white, and CSF differentiation. In comparison, while tissue differ-
entiation is readily apparent in the segmentation arising from the
CT image, it is of lower visual quality, given the lower SNR and
CNR of the base CT image.

Assessment of Interscanner Variability and Repeatability
By 1-way ANOVA, no differences in average ICV, BV, and GM
or WM volume were found between any set of scanners (Online
Supplemental Data). Repeat measurements from the same subject
had low variability (coefficient of variation of <10%) across all
volumes and pipelines (Table 1). All further analysis used pooled
data from all scanners.

Volume Comparisons between MR Imaging and CT

Regression analysis showed good agreement between volumes
derived from MR images versus those derived from CT. The cor-
relation coefficient between the 2 methods was 0.93 for the SPM

Table 1: CoV of global volumes derived from MR and CT

ICV BV GM WM
MR imaging 3.9% 2.1% 4.0% 3.0%
CT 4.5% 4.4% 5.4% 9.4%

Note:—CoV indicates coefficient of variation.
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FIG 2. The regression lines between all segmentation volumes (ICV, BV, GM volume, WM volume, CSF) extracted from MR imaging and CT using
the SPM pipeline (left) and FSL (right). The SPM regression line has a slope of 0.97 (95% Cl, 0.93-1.00, significantly different from identity, P <.05)
and an intercept of 115 (95% Cl, 90-141; r = 0.93). The FSL regression line has a slope of 0.93 (95% Cl, 0.91-0.95, significantly different from identity,

P < .05) and an intercept of 31(95% Cl, 15-46; r = 0.98).

Table 2: Mean global volumes (mL) extracted from paired MRI/CT images

agreed to within 16%-36%, with WM

being the outlier in both cases. Three

SPM FSL

MRI T P Value MRI cT P Value important differences between their

ICV  1393(SD,187) 1178 (SD,155)  <.001  1295(SD,168) 1336 (SD,155)  <.001 Wofk and Oursfh"“ld be noted. First,
BV 1099 (SD,151) 1028 (SD,15])  <.001 1076 (SD,146) 147 (SD,142)  <.001 while the CTs in that study were seg-
GM  675(SD,T5)  735(SD,T3)  <.001  553(SD,80)  523(SD,65)  <.001 mented with a modified SPM pipeline,
WM  424(SD,95)  295(SD,83)  <.001  522(SD,75)  625(SD,80)  <.001 MR images were segmented using

pipeline and 0.98 for the FSL pipeline (Fig 2). However, differen-
ces in global volumes were significant for all volumes compared
within a given segmentation pipeline (Table 2).

Bland-Altman analysis of the results from SPM (Fig 3)
showed that statistically significant biases were present for ICV
(16% bias, limits of agreement [LoA] = 24%), BV (6% bias,
LoA *20%), GM (10% bias, LoA = 30%), and WM (36% bias,
LoA = 38%), with CT underestimating ICV, BV, and WM, and
overestimating GM compared with MR imaging. Bland-Altman
analysis of the results from FSL (Fig 4) showed generally more
favorable agreement among modalities. Statistically significant
biases were present for ICV (3% bias, LoA * 14%), BV (6% bias,
LoA *16%), GM (6% bias, LoA *20%), and WM (18% bias,
LoA £ 18%), with CT overestimating ICV, BV, and WM, and
underestimating GM compared with MR imaging.

DISCUSSION

In this study, the MR imaging-CT segmentations produced by
FSL were in closer agreement than those produced by SPM. In
the 1 other study reporting paired MR imaging-CT data (which
used SPM), volumes were found to agree to within 5%."* In our
hands, FSL volumes agreed to within 3%-18% and SPM volumes
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another program, FreeSurfer. Second,

that study was prospective in nature
and had tight control over cohort inclusion and imaging parame-
ters. By including multiple scanners from each technique with a
broad range of clinical protocols in this current study, more rele-
vant metrics for population-level retrospective studies can be
obtained. Finally, the CT data included in that study were closer to
isotropic resolution than images included here, affecting deforma-
tion and registration quality. Investigating the limits of agreement
with regard to spatial resolution is a topic for future work.

Repeatability of CT segmentations using these methods is good
(coefficient of variation of <<10% for all volumes). Reproducibility
studies of brain segmentations generated from MR images have
produced coefficients of variation in the range of 0.2%-5.2%,
depending on the tissue compartment and software package
used.*** The repeatability metrics reported here compare favor-
ably with these values, especially considering the similar results
using MR imaging data within the same pipeline.

BVs are known to decrease with age, with an increasing frac-
tion of ICV taken up by CSF across the decades. Because images
were acquired within 1 year of one another and because all com-
parisons were pair-wise in the main analysis, no age-related cor-
rection factors were used in this study.

The population cohort used for this study was not healthy,
having been referred for multiple head scans using different
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FIG 3. Bland-Altman plots for global volumes derived from MR imag-
ing and CT using the SPM pipeline. Low biases were observed for BV
(70 mL; 6%) and GM (60 mL; 10%), with all biases observed being signif-
icant (P <.05).
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FIG 4. Bland-Altman plots for global volumes derived from MR imag-
ing and CT using the FSL pipeline. Low biases were observed for ICV
(41mL; 3%), BV (72mL; 6%), and GM (31mL; 6%), with all biases
observed being significant (P < .05).

modalities for indications ranging from cancer to trauma.
Therefore, close alignment with published values for the various
volume and volume fractions reported here should not be antici-
pated. For reference, a recent review of the literature found BV
ranges from 700-1300 HU, GM ranges of 400-700 HU, and WM
ranges of 300-625 HU.*

One important limitation discovered in the implementation
of these segmentation tools developed for MR imaging-CT data
is the high failure rate of the various steps of the processing pipe-
lines. Of 181 patients initially identified, 128 and 125 were suc-
cessfully analyzed by SPM and FSL, respectively. Of those, 105
were successfully analyzed by both, with the final cohort number
of 69 included in this study achieved after further pruning of out-
liers and of data obtained from resources with low scan counts.
This high failure rate (~30%) was largely driven by the brain-
extraction step, which often failed by removing large portions of
the frontal lobe from CT images or by removing small, somewhat
spherical regions of the temporal or parietal lobes. Future devel-
opments of CT-specific algorithms for brain extraction are likely
to improve this failure rate.

Several factors may explain the differences observed between
volumes obtained from CT versus MR imaging in the present
study. First is the drastically reduced CNR of a CT brain image
compared with its MR imaging counterpart. WM and GM are typ-
ically separated by only 5-10 HU on a CT image, with typical noise
levels; this feature translates to CNRs in the range of 1-2. An MR
image, by comparison, may have a CNR on the order of 10-15,
when comparing white and gray matter. The other major factor
differentiating MR imaging data from CT is the drastically differ-
ent resolutions of the 2 modalities. High-resolution MR imaging
data, as is typically used for segmentations such as these, are
acquired around 1 mm isotropic. Routine brain CT has a high in-
plane resolution; however, the through-plane section thickness is
typically much larger (the routine CT brain protocol used at our
institution has a 5-mm section thickness), causing partial volume
averaging of tissue radiodensities in the CT image, further blurring
the differences between tissue types.

CONCLUSIONS

MR imaging will undoubtedly remain the criterion standard for
brain tissue segmentation and volumetric analysis. Quantitative
assessment of volumes is dependent on many variables including
imaging technique and segmentation software. However, our
study shows that general trends do emerge and that certain volu-
metric classes can be estimated with a reasonable level of cer-
tainty. With careful study design, the convenience, affordability,
and availability of CT data should be considered for large, popu-
lation-based studies of brain volumetrics. Given that CT images
are captured much more frequently than MRIs in clinical care,
continued improvement of algorithms for estimating brain tissue
volumes from CT could have a profound impact for population
studies that use existing electronic health records.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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