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ORIGINAL RESEARCH
ADULT BRAIN

Neuroanatomic Markers of Posttraumatic Epilepsy Based on
MR Imaging and Machine Learning

H. Akrami, R.M. Leahy, A. Irimia, P.E. Kim, C.N. Heck, and A.A. Joshi

ABSTRACT

BACKGROUND AND PURPOSE: Although posttraumatic epilepsy is a common complication of traumatic brain injury, the relation-
ship between these conditions is unclear and early posttraumatic epilepsy detection and prevention remain major unmet clinical
challenges. This study aimed to identify imaging biomarkers that predict posttraumatic epilepsy among survivors of traumatic brain
injury on the basis of an MR imaging data set.

MATERIALS AND METHODS: We performed tensor-based morphometry to analyze brain-shape changes associated with traumatic
brain injury and to derive imaging features for statistical group comparison. Additionally, machine learning was used to identify
structural anomalies associated with brain lesions. Automatically generated brain lesion maps were used to identify brain regions
where lesion load may indicate an increased incidence of posttraumatic epilepsy. We used 138 non-posttraumatic epilepsy subjects
for training the machine learning method. Validation of lesion delineation was performed on 15 subjects. Group analysis of the rela-
tionship between traumatic brain injury and posttraumatic epilepsy was performed on an independent set of 74 subjects (37 sub-
jects with and 37 randomly selected subjects without epilepsy).

RESULTS: We observed significant F-statistics related to tensor-based morphometry analysis at voxels close to the pial surface,
which may indicate group differences in the locations of edema, hematoma, or hemorrhage. The results of the F-test on lesion
data showed significant differences between groups in both the left and right temporal lobes. We also saw significant differences
in the right occipital lobe and cerebellum.

CONCLUSIONS: Statistical analysis suggests that lesions in the temporal lobes, cerebellum, and the right occipital lobe are associ-
ated with an increased posttraumatic epilepsy incidence.

ABBREVIATIONS: FDR ¼ false discovery rate; ISLES ¼ Ischemic Stroke Lesion Segmentation; ML ¼ machine learning; PTE ¼ posttraumatic epilepsy; ROC ¼
receiver operating characteristic; TBI ¼ traumatic brain injury; TBM ¼ tensor-based morphometry; VAE ¼ Variational Autoencoder

The onset of posttraumatic epilepsy (PTE) after traumatic brain
injury (TBI) is relatively common.1 Epidemiologic studies

have found that PTE accounts for 10%–20% of all symptomatic
epilepsies in the general population and �5% of all epilepsies.2

Significant risk factors for seizures occurring or continuing beyond
1 week after TBI include the occurrence of seizures within the first
week, acute intracerebral (especially subdural) hematoma, brain

contusion, greater injury severity, and age older than 65 years at
the time of injury.3 As many as 86% of patients with 1 seizure early
after TBI experience a second one within the next 2 years.4

Despite the reported relationship between TBI and PTE, identi-
fying biomarkers of epileptogenesis after TBI is still a fundamental
challenge. Preliminary studies in adult male Sprague-Dawley rats
indicated the potential involvement of the perilesional cortex, hip-
pocampus, and thalamus in PTE and demonstrated the potential
of leveraging MR imaging analysis to find PTE biomarkers.4,5Received July 23, 2021; accepted after revision January 1, 2022.
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Previous MR imaging studies have shown correlations between
PTE incidence and the presence of lesions in T2-weighted scans,
injury severity, and injury type.6-9 Studies of PTE reported correla-
tions between PTE and the existence of frontal, parietal, and tem-
poral lesions.10-12 Nevertheless, the association between PTE and
lesion size or location remains poorly understood. Additionally,
the heterogeneous nature of TBI injury types, pathology, and
lesions presents additional challenges to biomarker discovery.
Because the locations, spatial extent, and content of lesions vary
considerably among patients with-versus-without PTE, there is no
complete spatial overlap of injury profiles across the 2 groups. This
heterogeneity needs to be accounted for in statistical analyses due
to its potentially confounding effect. The prediction of posttrau-
matic seizure onset and frequency based on neurologic and radio-
logic examinations has been only moderately successful, and more
research is needed to understand the relationship between TBI and
PTE.10,13,14 Thus, the identification of imaging biomarkers can
help in developing better PTE prediction strategies.

This study uses multimodal MR imaging from subjects with
TBI to identify location- and contrast-related biomarkers for those
who will develop PTE. We performed 2 analyses aimed at charac-
terizing changes in brain structure using 2 distinct strategies:

• Morphometric analysis: We performed a population analysis
of morphometric changes in the brain associated with TBI. In
contrast to the lesion analysis described below, this analysis
focused on identifying changes in brain shape rather than
alterations in tissue composition.

• Lesion analysis: We used a machine learning (ML) method
for identifying abnormal contrasts in multimodal MR images,
which are indicative of lesion and tissue abnormalities such as
edema, hematoma, and hemorrhage.

The morphometric and lesion analyses provide distinct-but-
complementary information about the structure of the brain.
Morphometric analysis focuses on the differences in brain shape,
while the lesion analysis focuses on differences in tissue charac-
teristics. TBI can cause both types of structural changes in the
brain: changes in brain shape as a result of edema or direct injury
as well as changes in brain tissue characteristics due to lesions.
Therefore, it is important to analyze both of these aspects of
structural brain change as a result of TBI.

MATERIALS AND METHODS
Data
We used 3 data sets in this study: 1) the Maryland TBI MagNeTs
data set,15 2) the TRACK-TBI Pilot,16 and 3) the Ischemic Stroke
Lesion Segmentation (ISLES) data set with manually delineated
lesions.17 These data sets were used as follows: The neural net-
work was trained with 97 subjects using Track-TBI Pilot and 41
subjects using MagNeTs. For validation of the neural network,
we used 15 subjects from the ISLES data. Statistical analysis using
morphometry and lesions (group differences) was performed
using the MagNeTs data set, with a different subset of subjects
from those used for training the neural network. We used 37 sub-
jects with TBI who later developed epilepsy (26 males/11 females,
16–65 years of age) and 37 randomly selected subjects who did
not (27 men/10 women, 18–70 years of age). In all TBI data sets,

MR imaging was collected within 10days of injury. More detailed
information about these 3 data sets is provided in the Online
Supplemental Data.

Preprocessing
Preprocessing of all 3 data sets was performed using the
BrainSuite software (https://brainsuite.org). The 3 modalities (T1,
T2, FLAIR) were coregistered to each other by registering T2 and
FLAIR to T1. The T1 images were also each coregistered to the
Montreal Neurological Institute atlas using a rigid (translation,
scaling, and rotation) transformation. As a result, we transformed
images in all 3 techniques to the Montreal Neurological Institute
atlas space at a 1-mm3 resolution. Brain extraction was performed
by stripping away the skull, scalp, and any nonbrain tissue from
the image using BrainSuite. This was followed by tissue classifica-
tion and generation of the inner and pial cortex surfaces.

Lesion identification using a neural network was performed
on 2D axial images. Following registration to the Montreal
Neurological Institute atlas and removal of nonbrain tissue, all 2D
axial images (T1, T2, FLAIR) were reshaped to 128� 128 pixels
and histogram-equalized to a lesion-free subject. These data were
then used for training and testing the lesion-detection network.

For tensor-based morphometry (TBM) and volumetric lesion
analysis, we performed a further deformable registration of all
subjects to a common atlas. The extracted cortical surface repre-
sentations and brain image volumes for each subject were jointly
registered to the BCI-DNI Brain Atlas (http://brainsuite.org/
svreg_atlas_description). This coregistration establishes a one-to-
one correspondence between individual subjects’ T1 MRIs and
the atlas. The deformation map that transforms between the sub-
ject and the atlas encodes any morphometric differences between
subject and atlas.

To achieve this registration, BrainSuite first performs a series of
processing steps that involve correction for image contrasts as well
as other scan and structural anomalies. These involve bias field cor-
rection that corrects for tissue-contrast changes due to field inho-
mogeneities during MR imaging. Other stages in the processing
sequence include anisotropic filtering, topology correction, and
dewisping modules to remove small errors due to noise and limited
scan resolution. The Surface-Volume Registration module18 in
BrainSuite then performs coregistration of individual subjects to an
atlas. The volumetric coregistration in Surface-Volume Registration
is constrained by cortical surface matching, to ensure 1–1 alignment
of the subject and atlas cortices. The incorporation of surface and
volume matching constraints makes the coregistration robust to the
presence of lesions and missing or abnormal brain tissue as a result
of injury. As a result, the correspondence between subject and atlas
at the lesion is interpolated on the basis of the surrounding tissue,
and anatomic correspondence away from the anomalies is mini-
mally affected. Additionally, the results of the BrainSuite processing
sequence were manually inspected to ensure accurate coregistration
and exclude failed processing.

Tensor-Based Morphometry
To perform a morphometric analysis that compares the brain
shapes of patients with PTE with those of participants without
PTE, we used TBM.19 TBM is an established neuroimaging
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method that identifies regional differences in brain structure in
groups or individuals relative to a control group using the deter-
minant of the Jacobian matrix computed from the deformation
field; the latter defines a nonlinear mapping that warps the brain
into a common (atlas) space.20 Regions of the brain that differ
most from the reference atlas brain will be characterized by sig-
nificantly smaller (eg, atrophy/tissue loss) or larger (eg, enlarged
ventricles) Jacobian determinants relative to controls. For this
group study, we used 37 subjects with TBI who later developed
PTE and 37 who did not from the MagNeTs data set.

We used the TBM pipeline in BrainSuite to map structural
brain changes resulting from TBI to identify regions that are more
strongly associated with the onset of PTE.19,21 The Jacobians are
computed from the deformation fields associated with the corti-
cally constrained volumetric subject-to-atlas registration described
above. We applied 3-mm SD (7-mm full width at half maximum)
isotropic smoothing to the Jacobian determinant maps to account
for residual misregistration and to increase statistical power.

We analyzed the Jacobian determinants at each voxel using an
F-test to determine whether there were group differences in the var-
iances of this measure. The null hypothesis for the test is that the
variances of Jacobian determinants in the PTE and non-PTE groups
are equal. Our reason for applying the F-test is as follows: Because
trauma affects different areas in the brain in different subjects across
groups, it is unlikely that consistent localized differences between
the 2 groups would be observed. Accordingly, we found that a t test
of differences in the group means did not show significance.
Because there may be .1 region in which lesions lead to a higher
probability of developing PTE, we hypothesized that only a subset
of subjects with PTE would have TBI-related differences from the
non-PTE group in any particular area, leading to a larger variance
across the PTE group in these areas relative to the non-PTE group.
Thus, we performed the F-test, which allows us to observe larger
variances in localized shape differences in the PTE relative to non-
PTE group in regions at higher risk for developing PTE foci. The
resulting P values were corrected for multiple comparisons using
the Benjamini-Hochberg false discovery rate (FDR) procedure.22

Lesion-Based Analysis
To complement the TBM analysis, which captures morphometric
brain changes, we also performed a lesion-based analysis to
analyze changes in the underlying tissue microstructure, edema,
and other TBI-related factors revealed by MR imaging contrast
changes. For lesion mapping, we used multimodal MR images
(T1, T2, FLAIR) and ML to automatically identify and delineate
abnormal tissues. Lesions can be identified by visual inspection
after extensive training, but this time-consuming process makes
ML an attractive alternative. Approaches based on supervised ML
have already achieved noticeable success, reaching high accuracy
for lesion detection.23,24 Many manual lesion delineations are
required to train supervised machines. In contrast, unsupervised
approaches do not require labeled data but can be less accurate.
Results are presented below reporting on the accuracy of the
unsupervised method used here for lesion detection.

A popular unsupervised ML approach to lesion identification
leverages a form of deep learning neural network known as a
Variational Autoencoder (VAE).24,25 The VAE is a directed prob-
abilistic graphic model whose posteriors are approximated by a
neural network. By training the VAE using nominally normal
imaging data, the network learns to encode only images with nor-
mal findings. As a result, the associated image “decoder” can
reconstruct these images. When presented with images contain-
ing lesions or anomalies, the VAE encodes and reconstructs the
image as if it contained only normal structures, as illustrated in
Fig 1. Lesions as well as other pathology that may include hema-
toma, edema, and hemorrhage can then be identified from the
differences between original and VAE-decoded images.

For the architecture of the VAE, we used the convolutional
neural network proposed in Larsen et al 2015,26 which consists of 3
consecutive blocks of convolutional layers, a batch normalization
layer, a rectified linear unit activation function, and 2 fully con-
nected layers in the bottleneck for the encoder. For the decoder, we
used a fully connected layer and 3 consecutive blocks of deconvo-
lutional layers, a batch normalization layer, and a rectified linear
unit with a final deconvolutional layer (Fig 1). The VAE detects
lesions in 2D axial images of 128� 128 pixels. The size of the input
layer is 3� 128� 128, accommodating T1, T2, and FLAIR data. A
more detailed description of this method and architecture is avail-
able in Akrami et al.24 Lesions are delineated on the basis of the
VAE error between the input and reconstructed FLAIR images.
Volumetric lesion maps are re-assembled from these 2D images.
The resulting 3D VAE lesion maps are then warped to the BCI-
DNI atlas space by applying the deformation field computed to
map each subject to the atlas as described above. By representing
all lesion maps in a common atlas space, we are then able to per-
form the statistical analysis described below.

We used a combination of 97 subjects from the Maryland TBI
MagNeTs data set and 41 from the TRACK-TBI Pilot data to
train the VAE. These data sets are not lesion-free, but a VAE can
handle occasional lesions in the training set because it has some
degree of robustness to outliers. To ensure this, we compared its
performance with our recently described Robust-VAE24,27 and
confirmed that there was no significant difference between their
results. Despite this robustness, the number of anomalies in the
training data should be minimized, and because we expected the

FIG 1. The VAE network and an input/output sample pair from the
ISLES data set. X denotes the input data; Z denotes its low-dimen-
sional latent representation. The VAE consists of an encoder network
that computes an approximate posterior qw (ZjX), and a decoder net-
work that computes pu (XjZ). The VAE model takes T1, T2, and FLAIR
images from individual subjects (left), compresses them to generate a
latent representation (Z), and regenerates 3 images (right). The VAE is
trained on a data set that contains few lesions. After training, when
presented with a newly lesioned brain, the reconstruction effectively
removes the lesion from the image, resulting in a normal (lesion-free)
version of the brain.
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lesion load to be somewhat lower in the non-PTE group, we used
only subjects without PTE for training. Validation of lesion delin-
eation using the trained VAE was performed using 15 subjects
from the manually labeled ISLES data.

A group study of the relationship between lesion load and
location and PTE onset was performed using the same 74 subjects
(37 with and 37 without PTE) as in the TBM study. Using a
method similar to the TBM analysis, we analyzed the VAE lesion
maps using an F-test to determine whether there were statistically
significant differences in the variances of lesion maps between
the PTE and non-PTE TBI groups. As with the TBM analysis, we
also confirmed that the t test did not show any significance due
to the heterogeneity of lesion locations. Because lesion locations
vary across subjects, some subjects in either group have healthy-
appearing tissue at a given location in the brain, whereas some
have lesions. However, if lesions in a brain region increase the
chance of PTE, then in that region, we would expect to see greater
heterogeneity across the PTE than the non-PTE group, leading to
an increase in variance as reflected in the F-test on the lesion
maps. The resulting P values were corrected for multiple compar-
isons using the Benjamini-Hochberg FDR procedure.22

We also performed a regional analysis by quantifying lesion
volume from binarized lesion maps in each lobe using our
USCLobes brain atlas (http://brainsuite.org/atlases/). This atlas
consists of lobar delineations (left and right frontal, parietal, tem-
poral, and occipital lobes, as well as the bilateral insula and cerebel-
lum). To identify the lesions using a binary mask in each lobe, we
applied a 1-class support vector machine28 to the VAE lesion maps
at each voxel and across subjects to identify subjects with abnor-
mally large VAE reconstruction errors at that voxel. The 1-class
support vector machine is a commonly used unsupervised learning
algorithm for outlier detection.28,29 We used the outliers marked
by the 1-class support vector machine as lesion delineations and
computed lesion volumes per lobe by counting the number of out-
lier voxels in each lobe for each subject.

Validation of VAE Lesion Detection
After training the VAE, we evaluated its performance using 15 sub-
jects from the ISLES data set for which manually delineated lesions
are also available. We calculated the pixel-wise absolute reconstruc-
tion error and applied median filtering to the resulting image to
remove isolated pixels. Ground truth was defined using hand-
traced delineation of lesions on FLAIR images.17 We then gener-
ated receiver operating characteristic (ROC) curves and computed
the area under the curve on the basis of the concordance between
pixels in the labeled lesions and those pixels in which the absolute
error image exceeded a given threshold. The ROC curves were
generated by varying the lesion-threshold intensity in the error
image to control the true- and false-positive rates.

RESULTS
TBM-Based Analysis
The results of TBM analysis using F-tests applied to the Jacobian
determinant maps are shown in Fig 2. As anticipated, in the case
of the t-statistic map (not shown), TBM analysis results did not
survive multiple-comparison corrections for the FDR using the
Benjamini-Hochberg procedure.22 This result may be because

of the heterogeneity of lesion locations and sizes across both
groups. In contrast, the F-test is sensitive to significant differen-
ces in variance between the 2 groups and does show regions
where the Jacobian determinant is significantly different, even
after FDR correction (q= 0.05). The voxels close to the pial sur-
face associated with significant differences may indicate group
differences in the locations of edema, hematoma, or hemor-
rhage and may, therefore, be associated with an increased risk
of PTE.

Lesion-Detection Performance
Performance of the VAE lesion-detection methods was quanti-
fied using ROC analysis on 15 subjects from the ISLES data set.
Due to the infrequent occurrence of lesions in the training data,
the VAE was able to prevent reconstruction of lesions so that
they appeared in the error map. We illustrate VAE performance
for cases in which lesions are present in Fig 3. Note that the
reconstructed images in B are “de-lesioned” approximations of
the input images in A. Normal tissue is reconstructed, whereas
anomalies and lesions are not. The error maps in C are indica-
tive of anomalies in the brain. The error maps after median fil-
tering in D show reasonable correspondence with the ground
truth E. The area under the curve for the lesion-detection ROC
study on the ISLES data was 0.81 (SD, 0.003) (the confidence
interval was achieved using 100 bootstrap iterations). We also
calculated the Dice coefficient, which quantifies the intersection
between 2 sets, in our case the ground truth and VAE-deter-
mined lesion volumes. To define lesion volume, we thresholded
the VAE error at a false detection rate per voxel of 0.01. The av-
erage Dice coefficient across the test set was 0.47 (SD, 0.29).

Lesion-Based Analysis
The results of the F-test showed significant differences between
groups in both the left and right temporal lobes. We also saw sig-
nificant differences in the right occipital lobe and the cerebellum
(Fig 4). The results of the lobar analysis (Table) were consistent
with voxelwise analysis, showing an increased variance in the
PTE population relative to subjects without PTE in the left and
right temporal lobes, right occipital lobe, and cerebellum.

DISCUSSION
Our results are consistent with earlier TBI studies that showed a
relationship between lesion location and the probability of PTE

FIG 2. Three orthogonal views through the P values thresholded at
P¼ .05 (FDR-corrected) obtained for the F-test for TBM analysis using
Jacobian determinants. L indicates left; R, right.
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onset. In particular, the F-test in our lesion study indicates a corre-
lation between PTE presence and the frequency of lesion occur-
rence in temporal lobes, consistent with previous studies.10-12,30,31

Most interesting, the TBM F-test shows areas of significant differ-
ences between groups that are, in large part, clustered on or just
below the pial surface as well as in the cerebellum. Furthermore,
these TBM results appear largely complementary to the lesion
analysis, indicating effects near the pial surface in contrast to the
larger scale and deeper lesion-related findings. While the near-sur-
face clusters could be false-positives and need further investigation,
this result may indicate the increased occurrence of edema or

hematoma in patients with acute TBI, which is known to alter the
cortex shape32 and which may be associated with an increased
chance for developing PTE.

TBM and its extensions20,33 have been used for whole-brain
analysis of structural abnormalities in patients with temporal lobe
epilepsy. Significant volume reductions were found in brain regions
including the hippocampus, cingulate gyrus, precentral gyrus, right
temporal lobe, and cerebellum.33 Cross-sectional studies of children
with chronic localization-related epilepsy using traditional volumet-
ric and voxel-based morphometry have revealed abnormalities in
the cerebellum, frontal and temporal lobes, hippocampus, amygdala,

and thalamus.34-37 The etiology of these
cohorts involves mesial temporal sclero-
sis,34 and it may even be cryptogenic.35

Pediatric and adult populations present
slightly different patterns in gray matter
atrophy; however, the involved regions
are largely common.36 One exception is
epileptic encephalopathies in infants
and children.38

While in mesial temporal lobe epi-
lepsies, hippocampal sclerosis is the
most common pathologic finding,39

neuronal damage is often not restricted
to the hippocampus. MR imaging mor-
phometric studies have demonstrated
extrahippocampal and extratemporal
atrophy in adults with mesial temporal
lobe epilepsies.40-43 These studies also
emphasized the role of temporal lobe
damage in epilepsy, which provides fur-
ther evidence for the role of temporal
lobe lesions in PTE. The findings from
our study further support this evidence
for the involvement of the temporal
lobe. Furthermore, studies like ours
may assist or complement efforts to
study posttraumatic metabolic crises44

or to localize posttraumatic epilepticFIG 4. Orthogonal views through the P values thresholded at P = .05 (FDR-corrected) obtained
for the F-test comparing lesion maps for the PTE and non-PTE groups. L indicates left; R, right.

FIG 3. Reconstruction results obtained by applying the VAE to the ISLES data set. A, Sample slices
from input images. B, Slices reconstructed from the VAE. C, Difference between input and recon-
structed images. D, Error maps after applying median filtering to reduce the occurrence of spuri-
ous voxels. E, Manually delineated lesion masks used as ground truth to evaluate VAE
performance.

Lobe-wise lesion volumes as measured using a 1-class SVM to generate binary lesion maps

Lobe

Percentages of Lobe Volumes
in Subjects with PTE
(mean, median [SD])

Percentages of Lobe Volumes
in Subjects without PTE
(mean, median [SD]) P Value (F-Test)

Right temporal 5.267, 4.746 [1.496] 4.888, 4.803 [0.819] .003a

Left temporal 5.267, 4.993 [1.223] 4.924, 4.871 [0.7661] .02a

Right occipital 4.739, 4.131 [1.749] 4.817, 4.724 [1.225] .05a

Left occipital 4.472, 4.336 [1.358] 4.658, 4.384 [1.001] .08
Right frontal 5.223, 4.794 [1.416] 5.456, 4.897 [1.868] .95
Left frontal 5.513, 5.251 [1.646] 5.342, 5.016 [1.399] .31
Right parietal 5.113, 4.756 [1.353] 5.197, 4.999 [1.337] .65
Left parietal 4.943, 4.610 [1.183] 5.134, 4.859 [1.320] .82
Right insula 5.524, 5.319 [1.259] 5.205, 5.147 [1.383] .65
Left insula 5.229, 5.082 [1.067] 4.797, 4.612 [1.045] .82
Cerebellum 5.130, 4.758 [1.269] 5.117, 5.046 [0.8524] .03a

Note:—SVM indicates support vector machine.
a Cases of significant differences in the variance of lesion volume between PTE and non-PTE (F-test). the FDR-corrected P values are shown at a significance level of a =
.05. We report both mean and median lesion volumes.
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foci for surgical resection via electroencephalography.45 The novel
use of a VAE here to automatically delineate lesions may prove use-
ful for future studies over the large data sets or collections of data
sets like Federal Interagency Traumatic Brain Injury Research
Informatics Systems (https://fitbir.nih.gov/), in which manual seg-
mentation is very time-consuming and/or subject to large interrater
variability.

One limitation of this study is that individualized clinical data
related to the injury mechanism and severity of the injury, known
risk factors for PTE,46 are not available in the public data sets avail-
able for research studies. Similarly, while the range of the Glasgow
Coma Scale score, a predictor of PTE, is available, individualized
Glasgow Coma Scale scores are not. Another limitation is that
while recurrent seizures were noted in the questionnaire for this
study, additional information about the seizure frequency and
types is unavailable. Also, having access to a delineated set of TBI-
related lesions rather than the ISLES data for subjects with stroke
used for validation here would help better optimize the TBI lesion-
detection neural network. Despite these limitations, the statistical
analysis shows the role of the temporal lobe in PTE and demon-
strates the utility of imaging-based early markers of PTE.

CONCLUSIONS
In this study, we investigated the relation of MRI structural bio-
markers to development of epilepsy in posttraumatic patients.
Our results demonstrate that lesions in the temporal lobes, cere-
bellum, and the right occipital lobe are associated with an
increased posttraumatic epilepsy incidence. Furthermore, our
TBM results appear largely complementary to the lesion analysis,
indicating differences in brain morphometry near the pial sur-
face, possibly associated with edema, hematoma, or hemorrhage,
to be associated with increased risk for PTE.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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