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ORIGINAL RESEARCH
ADULT BRAIN

DWI-Based Radiomics Predicts the Functional Outcome of
Endovascular Treatment in Acute Basilar Artery Occlusion
X. Zhang, J. Miao, J. Yang, C. Liu, J. Huang, J. Song, D. Xie, C. Yue, W. Kong, J. Hu, W. Luo, S. Liu,

F. Li, and W. Zi

ABSTRACT

BACKGROUND AND PURPOSE: Endovascular treatment is a reference treatment for acute basilar artery occlusion (ABAO).
However, no established and specific methods are available for the preoperative screening of patients with ABAO suitable for
endovascular treatment. This study explores the potential value of DWI-based radiomics in predicting the functional outcomes of
endovascular treatment in ABAO.

MATERIALS ANDMETHODS: Patients with ABAO treated with endovascular treatment from the BASILAR registry (91 patients in the
training cohort) and the hospitals in the Northwest of China (31 patients for the external testing cohort) were included in this
study. The Mann-Whitney U test, random forests algorithm, and least absolute shrinkage and selection operator were used to
reduce the feature dimension. A machine learning model was developed on the basis of the training cohort to predict the progno-
sis of endovascular treatment. The performance of the model was evaluated on the independent external testing cohort.

RESULTS: A subset of radiomics features (n ¼ 6) was used to predict the functional outcomes in patients with ABAO. The areas
under the receiver operating characteristic curve of the radiomics model were 0.870 and 0.781 in the training cohort and testing
cohort, respectively. The accuracy of the radiomics model was 77.4%, with a sensitivity of 78.9%, specificity of 75%, positive predic-
tive value of 83.3%, and negative predictive value of 69.2% in the testing cohort.

CONCLUSIONS: DWI-based radiomics can predict the prognosis of endovascular treatment in patients with ABAO, hence allowing
a potentially better selection of patients who are most likely to benefit from this treatment.

ABBREVIATIONS: ABAO ¼ acute basilar artery occlusion; AUC ¼ area under the receiver operating characteristic curve; CAPS ¼ critical area perfusion
score; EVT ¼ endovascular treatment; LASSO ¼ least absolute shrinkage and selection operator; ML ¼ machine learning; pc ¼ posterior circulation; pcASCO ¼
posterior circulation ASPECTS-Collaterals score; RF ¼ radiomics feature

Acute basilar artery occlusion (ABAO) is a rare but very aggressive
subtype of ischemic stroke with high rates of mortality and dis-

ability, accounting for approximately 1% of all ischemic strokes and

5%–10% of large-vessel occlusion strokes.1-3 Recently, 2 prospective
multicenter randomized clinical trials (the Basilar Artery Occlusion
Chinese Endovascular trial [BAOCHE]4 and the Endovascular
Treatment for Acute Basilar-Artery Occlusion trial [ATTENTION5])
and our previous the EVT for Acute Basilar Artery Occlusion Study
(BASILAR) registry study6 indicated that endovascular treatment
(EVT) for patients with ABAO resulted in better functional outcomes
than the best medical treatment. However, current evaluation meth-
ods for preoperative images of ABAO are limited compared with an-
terior circulation ischemic stroke.

Previous studies have identified several indicators and scoring sys-
tems that predict the prognosis of patients with ABAO, such as
ASPECTS, the combined collateral status and ASPECTS scores
(PCASCO), and infarct volume. However, their performance in pre-
dicting outcomes is not satisfactory. This issue may be explained by
the posterior fossa radiologic particularities and the anatomic differen-
ces in the posterior circulation. Accurate and specific preoperative
assessment and selection are key to determining EVT prognosis.
Thus, there is an urgent need to develop an effective method for
assessing the benefits of EVT in patients with ABAO.
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The concept of radiomics has recently been applied in many
fields to quantitatively assess lesions by extracting large amounts
of high-dimensional imaging information from conventional
images, helping to reflect lesion characteristics beyond morpho-
logic features and adding value to MR imaging guides for early
stroke treatment.7 In contrast to measuring features, such as the
volume and signal intensity of infarct regions of brain tissue,
radiomics is characterized by the ability to detect many-but-subtle
changes in the area of interest that are not recognizable to the
human eye.8 The fusion of deeply mined imaging information
with machine learning (ML) techniques can provide valuable
diagnostic, prognostic, or predictive information for the treat-
ment of clinical diseases.9 Recently, a novel prognostic evalua-
tion consisting of radiomics and ML has been proposed to
predict the time to onset10 and prognosis11,12 of acute ischemic
stroke in the anterior circulation. These high-dimensional fea-
tures exhibited superior diagnostic advantages and ability, with
good sensitivity and specificity in predicting prognosis and
treatment strategies.13-15 To our knowledge, no other study based
on radiomics has predicted the functional outcome of patients
with ABAO on presurgical DWI.

Therefore, our study aimed to investigate the value of DWI-
based radiomics in predicting the functional outcomes of EVT
for ABAO. Additionally, we tested the diagnostic performance of
the model in an independent external testing cohort.

MATERIALS AND METHODS
Ethics Statements
Permission was obtained from the ethics committee of the
Xinqiao Hospital (Second Affiliated Hospital), Army Medical

University Board (2013-yandi-08701),
and written informed consent was
obtained from all patients or their legal
representatives.6 The research of clinical
features and imaging material was
decided by the group. The BASILAR
study was registered with the Chinese
Clinical Trial Registry (http://www.chictr.
org.cn; ChiCTR1800014759). The study
has been conducted according to the
principles expressed in the Declaration of
Helsinki.

Participants
The training cohort used the BASILAR
registry, a multicenter, observational
study including 647 consecutive patients
with ABAO who underwent EVT from
January 2014 to May 2019 in 47 senior
stroke centers across 15 provinces in
China. The test cohort enrolled patients
with ABAO from Xianyang Hospital of
Yan’an University and The Affiliated
Hospital of Northwest University
between April 2018 and June 2022
(Fig 1). We have verified that there are

no overlapping patients in the 2 cohorts. The study followed the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline. We included only
patients who underwent both NCCT and DWI before EVT.
Patients were excluded in case of low-quality images (eg, motion
artifacts or metal artifacts). The training cohort was used to select
relevant radiomics features (RFs) and build a predictive ML
model; then, we used the testing cohort to evaluate the accuracy of
the predictive model. Because patients with ABAO have a worse
prognosis than those with anterior circulation stroke, patients
with an mRS of #3 on the 90th day after EVT were defined as
having a favorable functional outcome, whereas those with an
mRS. 3 showed an unfavorable functional outcome.

Segmentation of the Infarct Region
Infarct regions were manually segmented with 3D Slicer (Version
4.11; http://www.slicer.org).16 Additionally, we viewed the corre-
sponding ADC image for guidance. The ROI (infarct region) of
segmentation was based on the weight of the posterior circulation
(pc)-ASPECTS. Two points each are subtracted for high signal in
the right or left pons or midbrain, independently, and 1 point each
is subtracted for high signal in any part of the cerebellum, thala-
mus, or occipital cortex.17 The ROI (infarct region) in both
cohorts has manually segmented the images by an experienced
neuroradiologist (reader A, blinded to the eventual diagnosis)
along the intraparenchymal regions of the high-signal contour on
each transverse section (Fig 2A, -B). With reference to a guideline
of reliability research,18 we selected all patients for assessing the
interoperator agreement of feature extraction. A senior neurora-
diologist re-segmented the images of all patients (reader B,
blinded to the eventual diagnosis). Both neuroradiologists were

FIG 1. Flowchart of research patients and process. SMOTE indicates synthetic minority oversam-
pling technique.
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blinded to the final diagnosis. Interobserver repeatability of lesion
segmentation was assessed by calculating the k coefficients of the
extracted RFs (k ¼ 0.97, 95% CI, 0.894–0.980). Good agreement
was defined as RFs with k coefficients of.0.75.

RF Extraction
Substantial RFs were automatically extracted from the diffusion-
weighted images with the use of pyradiomics (Version: latest;
https://pyradiomics.readthedocs.io/en/latest/), including first-order
statistics, shape-based features, and textural features (Table 1):

Set 1: First-order statistics can quantify the intensity charac-
teristics by calculating all voxels within the infarct region.

Set 2: This set included shape features, eg, the infarct length,
surface, and volume.

Set 3: Textural features quantify textural heterogeneity within
the infarct region.

Further higher-order features were found by applying filters
to native DWI (Table 1). A detailed definition of RFs can be
obtained from the pyradiomics Web site (https://pyradiomics.
readthedocs.io/en/latest/).

RF Selection and Classification
Before building a prognostic prediction model for ABAO, we
used the Mann-Whitney U test and the random forests algorithm
to screen relevant features in the training cohort (Fig 1). On the
basis of 5-fold cross-validation, the least absolute shrinkage and
selection operator (LASSO) regression model selected the optimal
features and extracted those with nonzero coefficients. RFs were
tested for collinearity using the collinearity diagnosis in the linear
regression analysis, and features with a variance inflation factor
of.10 were excluded. To eliminate the biases of class in the neg-
ative and positive distributions, radiomics data adopted the syn-
thetic minority oversampling technique, which can potentially
improve the efficacy of the model.19 The predictive model was
based on a support vector machine classifier, and its best parame-
ters were evaluated by the grid search cross-validation method in
the training cohort. A radiomics model was constructed on the
training cohort and then validated on the testing cohort. The pre-
dictive performance of the radiomics model was assessed using
accuracy, specificity, sensitivity, negative predictive value, positive
predictive value, and the area under the receiver operating

FIG 2. The radiomics analysis schematic. A, DWI. B, ROI. C1, ROI in 3D space. C2, Overall distribution of different RFs. The different features
were analyzed between the 2 groups using a volcano plot. Red dots represent positive correlations with good outcomes, whereas blue dots rep-
resent negative correlations. FC indicates fold change. D1, Venn diagram (Mann-Whitney U test and random forests). D2, Radiomics feature
determination using the LASSO regression with 5-fold cross-validation. The smallest mean squared error (MSE) corresponds to the number of
horizontal coordinates for the best l value. D3, LASSO coefficient profiles of the 78 RFs. The best RFs with nonzero coefficients at a l value of
0.06 were selected. E1, The selected RFs and their coefficients. A coefficient of .0 means that the characteristic is positively correlated with
the outcome, whereas a coefficient of,0 means that it is negatively correlated with the outcome. E2, Receiver operating characteristic curve
results of the best RFs from different feature classifications compared with ASPECTS from conventional imaging.

Table 1: Feature classification
RF Class No. of RFs

Set 1: First-order statistics 36
Set 2: Shape-based 28
Set 3: Textural features
Gray-level co-occurrence matrix 48
Gray-level dependence matrix 28
Gray-level run length matrix 32
Gray-level size zone matrix 32
Neighboring gray tone difference matrix 10

Image filter
LoG 930
Wavelet 1488
Square 186
Square root 186
Logarithm 186
Exponential 186
Gradient 186
Lbp2D 186

Note:—LoG indicates laplacian of gaussian; Lbp2D, local binary pattern 2D.
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characteristic curve (AUC). The dimension reduction of the
radiomics features and the development of the radiomics models
were implemented in scikit-learn (Version 1.0.2; https://scikit-
learn.org/stable/).

Clinical Data Collection and Statistical Analysis
All neuroimaging scores were evaluated using an imaging core
laboratory. Continuous variables such as demographic data and
clinical characteristics were compared using the independent sam-
ples t test or Mann-Whitney U test. Categoric variables were
tested using the x 2 test or Fisher exact test. Descriptive statistics
are expressed as mean (SD) or median (interquartile range) for
continuous variables and as frequency (percentage) for categoric
variables. The P values for all tests were 2-tailed. All tests were
considered statistically significant at P, .05. We excluded patients
with missing essential data from this analysis; thus, there was no
need for imputation. All of the aforementioned analyses were
implemented using the Python platform with an in-house code
(Version 3.9; Guido van Rossum) and SPSS statistical analysis
software (Version 26.0; IBM).

RESULTS
Patient Characteristics
All patients completed the 90 days of follow-up and were included
in the final analysis. The Online Supplemental Data present the
differences in the baseline characteristics of the patients in the
training cohort by favorable and unfavorable functional outcomes.
Except for the baseline NIHSS score, pc-ASPECTS (DWI), infarct
volume, expanded TICI, and recanalization time, no other charac-
teristics were significantly different (P, .05).

Among the patients with different clinical outcomes at 90 days,
those with favorable functional outcomes had a lower initial
NIHSS score (15 [range, 6–23] versus 28 [range, 20–32], P, .001)
than those with unfavorable functional outcomes before EVT. In
both groups, the DWI ASPECTS was slightly lower than the
NCCT ASPECTS (7 [range, 6–8] versus 6 [range, 5–7]; P ¼ .019
and 8 [range, 7–9] versus 8 [range, 6–9]; P ¼ .15, respectively).
Compared with patients with unfavorable functional outcomes,
patients with favorable functional outcomes had lower baseline
mean infarct volumes in the pons and midbrain (1.2 [SD, 0.9] ver-
sus 2.3 [SD, 1.8]; P ¼ .001; Online Supplemental Data). Patients
with favorable functional outcomes had higher rates of substantial
reperfusion (expanded TICI score) on the final angiogram than
those in the unfavorable functional outcomes group (P ¼ .001).
The baseline characteristics of the patients in the testing cohort
are shown in the Online Supplemental Data.

Selecting the Best RFs
We found good agreement between the 2 readers after assessing
the interobserver reliability of morphology measurements using
k coefficients (k ¼ 0.97; 95% CI, 0.894–0.980). According to the
pc-ASPECTS regions, many RFs were automatically extracted
from the infarct regions using pyradiomics. A total of 3748 RFs
were extracted from the DWI, including 14 shape-based features,
18 first-order statistical parameters, 24 gray-level co-occurrence
matrix indexes, 14 gray-level dependence matrix features, 16
gray-level run length matrix parameters, 16 gray-level size zone

matrixes, and 5 neighboring gray tone difference matrix features.
Further higher-order features were extracted after applying the
filters to the DWI (Table 1).

The volcano plot demonstrates the distribution of different
RFs between the 2 groups (Fig 2C2), according to the criteria of
log2jfold changej$1 and P, .05. The results showed that features
marked in red represent up-regulation, features marked in blue
represent down-regulation, and features marked in gray represent
no significant difference between the 2 groups. The 3748 features
were preliminarily screened using 2 algorithms: the t test and ran-
dom forests (Fig 2D1). Most of the 78 features preliminarily
screened by these 2 algorithms were all related to the brainstem
infarct region (Online Supplemental Data). The LASSO regres-
sion model (Fig 2D2, -D3) was further used to reduce the
dimensionality of the RFs, resulting in 6 DWI features to build
the radiomics models. The following characteristic was posi-
tively associated with a favorable functional outcome: wave-
let-HLL_glcm_MCC. The remaining 5 characteristics were
negatively associated with favorable functional outcomes:
1) brainstem-log-sigma-1–0-mm-3D_glcm_ClusterProminence;
2) brainstem-log-sigma-2–0-mm-3D_glcm_ClusterTendency;
3) brainstem-wavelet-LHH_glszm_ZoneVariance; 4) brain-
stem-wavelet-HHL_firstorder_Median; and 5) brainstem-lbp-
2D_firstorder_TotalEnergy (Fig 2E1).

Predictive Role of Traditional Imaging Indicators and RFs
in Prognosis
The traditional imaging and radiomics indicators related to prog-
nosis are shown in Fig 3. Among traditional imaging indicators,
DWI ASPECTS (AUC ¼ 0.644; 95% CI, 0.528–0.760) had a
slightly higher predictive value than CT ASPECTS (AUC¼ 0.588;
95% CI, 0.469–0.708) for favorable functional outcome.20 The
AUC is 0.701 (95% CI, 0.609–0.80) for the infarct volume in the
pons and midbrain.

The predictive accuracy of RFs was higher than that of con-
ventional imaging metrics, such as wavelet-HLL_glcm_MCC
(AUC ¼ 0.633; 95% CI, 0.525–0.731); brainstem-lbp-2D_
firstorder_TotalEnergy (AUC ¼ 0.722; 95% CI, 0.619–0.811);
brainstem-log-sigma-1-0-mm-3D_glcm_ClusterProminence
(AUC ¼ 0.694; 95% CI, 0.588–0.786); brainstem-log-sigma-
2-0-mm-3D_glcm_ClusterTendency (AUC ¼ 0.710; 95% CI,
0.605–0.800); brainstem-wavelet-HHL_firstorder_Median (AUC ¼
0.632; 95% CI, 0.524–0.731); and brainstem-wavelet-LHH_glszm_
ZoneVariance (AUC ¼ 0.688; 95% CI, 0.582–0.781). After the co-
variance test was performed for the radiomics indicators, all toleran-
ces were .0.1, and all variance inflation factors were ,10; thus, it
was thought that there was no covariance among the variables
(Online Supplemental Data). Figure 4 shows 2 examples of segmen-
tations from patients with ABAO with favorable (case 2) and unfav-
orable (case 1) outcomes.

External Validation of the Prognostic Prediction Models
The radiomics model based on the 7 selected RFs accurately pre-
dicted different prognoses after EVT in the independent testing
cohort. It had an overall accuracy of 77.4%, a sensitivity of
78.9%, a specificity of 75%, a positive predictive value of 83.3%,
and a negative predictive value of 69.2%. In the training cohort,

AJNR Am J Neuroradiol 44:536–42 May 2023 www.ajnr.org 539

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/


the AUC of the radiomics model was 0.870 (95% CI, 0.784–
0.932). In the testing cohort, the AUC of the radiomics model
was 0.781 (95% CI, 0.596–0.908). Detailed information is pro-
vided in Table 2.

DISCUSSION
To our best knowledge, this is the first multicenter MR imaging
study to investigate the value of DWI-based radiomics in predicting

the functional outcome of EVT in ABAO.21 We aimed to predict
a favorable prognosis for patients with ABAO based on the RFs
obtained in the infarct region on preoperative DWI. One of the 6
selected RFs was positively associated with a favorable prognosis:
the maximal correlation coefficient. Five of the 6 selected RFs
were negatively associated with a favorable prognosis: cluster
prominence, cluster tendency, zone variance, median, and total
energy. Median and total energy are first-order features describing

the distribution of voxel intensities
within the infarct region (image gray-
scale values). Cluster prominence, clus-
ter tendency, and maximal correlation
coefficient belong to the gray-level co-
occurrence matrix feature, which is
used to describe the spatial relationship
between the gray-scale values of neigh-
boring voxels in the infarct region.
Zone variance is classified as a gray size
area matrix feature that describes the
spatial distribution of neighboring vox-
els with similar gray-scale values in the
infarct region. A more detailed descrip-
tion of the radiomics features is shown
on the Web site https://pyradiomics.
readthedocs.io/en/latest/. The formula
and method of calculating the RFs are
shown in the Online Supplemental
Data.

Whether EVT will likely lead to a
favorable prognosis for patients with
ABAO is, in our view, an important pi-
ece of information that can help doc-
tors make applicable decisions about
the transport, triage, and treatment of
patients, particularly when the risks of
performing EVT are considered. The
aims of prognostic prediction for
patients before EVT are to exclude
those for whom intervention may be
futile and to evaluate which patients
may benefit. Patients in whom the pos-
sibility of a favorable prognosis with
EVT is very high and who may have a
lower risk of bleeding may benefit
from direct transport to EVT. Patients
in whom the possibility of a favorable
prognosis with EVT is very low and who
may have difficult or risky endovascular
access could be given conservative drug
treatment and observed for improve-
ment. These considerations can also be

FIG 4. Examples of segmentations from patients with ABAO with favorable (case 2) and unfavor-
able outcomes (case 1).

Table 2: Diagnostic performance of the radiomics model in the training and testing cohorts

AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV
Training cohort 0.870 (0.784–0.932) 80.4% 82.9% 71.4% 64.5% 86.9%
Testing cohort 0.781 (0.596–0.908) 77.4% 78.9% 75% 83.3% 69.2%

Note:—NPV indicates negative predictive value; PPV, positive predictive value.

FIG 3. ROC curve results of the best radiomics features from different feature classifications
compared with ASPECTS from conventional imaging. PC indicates posterior circulation; CP, clus-
ter prominence; CT, cluster tendency; ZV, zone variance; TE, total energy; ROC, receiver operat-
ing characteristic; MCC, maximal correlation coefficient; GLCM, gray level co-occurrence matrix;
GLSZM, gray level size zone matrix; SVC, support vector classifier.
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weighed when deciding on transport for patients who have received
IV thrombolysis or who are imaged at primary hospitals and await-
ing transport to comprehensive hospitals.

Currently, there is no established and specific imaging method
for preoperative screening of patients with ABAO suitable for
EVT. Pc-ASPECTS is a 10-point score widely used in clinical
practice to evaluate early ischemic changes. Recently, it has been
reported that patients with ABAO with a CT pc-ASPECTS of$5
benefit from EVT.22 However, it has also been discovered that
patients with a higher CT pc-ASPECTS still show significant dif-
ferences in functional outcomes, with only 11.2% of these patients
showing functional independence at 90 days. The posterior fossa
radiologic particularities and the anatomic differences in the pos-
terior circulation tend to produce bony artifacts and partial vol-
ume effects that reduce its sensitivity and diagnostic accuracy.23-25

Parenchymal changes in the ischemic region may be more easily
detected on MR imaging than on CT.26 However, the current
research on this aspect is controversial.27,28 The possible reasons
are that the borderline mRS is different and the assessment
method of pc-ASPECTS itself is flawed.

Further calculation of the ischemic degree in the infarct
regions and not just the infarct site may be more valuable in
evaluating prognosis. Recently, Broocks et al29 created a new
imaging score called PCASCO, which combines the collateral
circulation status and pc-ASPECTS to predict the prognosis of
ABAO stroke. Sun et al30 and Cereda et al31 used the critical
area perfusion score (CAPS) to quantify serious hypoperfusion
(time-to-maximum . 10) in the thalamus and/or midbrain (2
points), pons (2 points), and cerebellum (1 point/hemisphere).
Regardless of recanalization, a CAPS of #3 is a strong inde-
pendent predictor of a favorable prognosis. The CAPS reweights
the infarct region and increases the prognostic value of these
imaging markers by adding perfusion information. The CAPS
and other scales that consider the topography of the brain are
easily accessible and generalizable in the clinical setting and are
the cornerstone of diagnostic imaging. RFs can quantitatively
describe the spatial relationship of voxels with different gray-
scale values within the infarcted region. Driven by the increasing
availability of medical data and rapid advances in analytics, RF-
based predictive models may provide a new pattern for medical
diagnosis and treatment.

Cho et al32 selected 3 typical DWI sections of the brainstem
and scored ABAO according to these new slices. Li et al33 found
that the maximum length multiplied by thickness in the brain-
stem may be a predictor for assessing neurologic deterioration.
Consistent with our findings, Liu et al34 and Tajima et al35 found
significantly reduced infarct volumes from the midbrain and
pons and that increased caudate volumes had favorable clinical
outcomes in patients after EVT. Mourand et al36 showed that
pre-EVT cerebellar infarct volume was an independent predictor
of 90-day functional independence. Because the spatial distribu-
tion of nuclear masses in the brain tissue is multilevel,37 using a
single level in each brain region may not be sufficient to indicate
the severity of the infarct region. Meanwhile, we found that RFs
provide quantitative information at each plane and zone and
highlight essential brain regions in evaluating the extent of dam-
age more comprehensively.

RFs38 are calculated in a high-dimensional feature space that is
transformed from imaging information using massive data-char-
acterization algorithms. These subtle changes, which are difficult
to detect by the human eye, are captured by radiologic features in
the brain tissue environment. After we analyzed the RFs, the fea-
tures of predictive value were extracted from the brainstem infarct
region. The occipital cortex, thalamus, and cerebellum lesions are
less involved in functional outcome than those in the brainstem.35

The numerous key conduction systems that maintain conscious-
ness and physiologic activities cross the brainstem.37 This may
explain the worse clinical outcome of infarcts in the brainstem
region. Moreover, our algorithm provides quantitative informa-
tion on RFs, which reduces the interference of human measure-
ments and demonstrates the generalizability of the model on an
independent testing set. These findings may help neurologists in
the prognosis of patients with ABAO in the EVT era.

Our study has several limitations. First, the small sample size
in this study demands a cautious interpretation of the findings
and limits the generalization of our results. Future studies should
be performed with a larger sample size to better draw clinical
inferences. Second, the imaging information used in our study
was collected from imaging facilities at multiple centers, resulting
in various MR imaging acquisition parameters. The use of multi-
vendor images for artificial intelligence algorithms is advocated.39

In our view, radiomics-based models predicting the prognosis of
ABAO can be further optimized with much better standardiza-
tion of imaging data protocols. Third, after acquiring the patient's
imaging information, this technique can be used by a neuroradi-
ologist or neurologists. Manual processing of the images takes
approximately 20minutes. The manual segmentation of the ROI
on DWI is inefficient in an emergency surgery setting, and future
research will have to demonstrate whether this prediction can be
performed using automated algorithms. Currently, the software
and time required to make predictions are not suitable for clinical
applications. Further research in artificial intelligence software
may help obtain accurate predictions more quickly.

CONCLUSIONS
The extraction of RFs from the infarct region visualized on pre-
operative DWI provides information on the prognosis of EVT in
patients with ABAO. Characterizing the infarct region, the target
of EVT, by radiomics might be a technique that is worth develop-
ing to personalize the EVT of patients with ABAO.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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