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Cortical Thin Patch Fraction Reflects Disease Burden in MS:
The Mosaic Approach

Marlene Tahedl, Tun Wiltgen, Cui Ci Voon, Achim Berthele, Jan S. Kirschke, Bernhard Hemmer, Mark Mühlau,
Claus Zimmer, and Benedikt Wiestler

ABSTRACT

BACKGROUND AND PURPOSE: GM pathology plays an essential role in MS disability progression, emphasizing the importance of
neuroradiologic biomarkers to capture the heterogeneity of cortical disease burden. This study aimed to assess the validity of a
patch-wise, individual interpretation of cortical thickness data to identify GM pathology, the “mosaic approach,” which was previ-
ously suggested as a biomarker for assessing and localizing atrophy.

MATERIALS AND METHODS:We investigated the mosaic approach in a cohort of 501 patients with MS with respect to 89 internal
and 651 external controls. The resulting metric of the mosaic approach is the so-called thin patch fraction, which is an estimate of
overall cortical disease burden per patient. We evaluated the mosaic approach with respect to the following: 1) discrimination
between patients with MS and controls, 2) classification between different MS phenotypes, and 3) association with established bio-
markers reflecting MS disease burden, using general linear modeling.

RESULTS: The thin patch fraction varied significantly between patients with MS and healthy controls and discriminated among MS
phenotypes. Furthermore, the thin patch fraction was associated with disease burden, including the Expanded Disability Status
Scale, cognitive and fatigue scores, and lesion volume.

CONCLUSIONS: This study demonstrates the validity of the mosaic approach as a neuroradiologic biomarker in MS. The out-
put of the mosaic approach, namely the thin patch fraction, is a candidate biomarker for assessing and localizing cortical
GM pathology. The mosaic approach can furthermore enhance the development of a personalized cortical MS biomarker,
given that the thin patch fraction provides a feature on which artificial intelligence methods can be trained. Most important,
we showed the validity of the mosaic approach when referencing data with respect to external control MR imaging
repositories.

ABBREVIATIONS: AI ¼ artificial intelligence; CamCAN ¼ Cambridge Center for Ageing and Neuroscience; CIS ¼ clinically isolated syndrome; CTh ¼ cortical
thickness; EDSS ¼ Expanded Disability Status Scale; HC ¼ healthy controls; IQR ¼ interquartile range; MAP ¼ mosaic approach; MuSIC ¼ Multiple Sclerosis
Inventory of Cognition; PMS ¼ progressive MS; RRMS ¼ relapsing-remitting MS; TPF ¼ thin patch fraction; TUM ¼ Technical University of Munich

MS is a chronic disease of the CNS, which is characterized by
a complex interplay of inflammatory and neurodegenera-

tive processes.1,2 The significance of MR imaging for MS diagno-
sis and disease monitoring has increased during the past decades

and has ultimately allowed the diagnosis of MS based on a single
MR imaging assessment along a clinical symptoms.3

One problem in early and accurate patient management is the
vast heterogeneity of the disease and the severity, which cannot be
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predicted at onset; moreover, highly individualized neuroradio-
logic and clinical patterns are observed.4,5 As a consequence of this
diversity, the quest for a personalized approach to MS therapy has
evolved, which requires biomarkers that can be assessed on a sin-
gle-patient basis.6

Existing MR imaging biomarkers traditionally focus on the quan-
tification of WM lesions, given their well-established association with
disease burden.7-9 However, the role of progressive GM pathology
for the clinical course is increasingly recognized.10-13 Thus, the acqui-
sition of 3D T1WI gradient recalled-echo sequences (inversion recov-
ery or MPRAGE) has been optionally recommended for monitoring
GM pathology in the latest consensus guidelines by the Consortium
forMagnetic Resonance Imaging inMS (MAGNIMS).14

However, individualized assessment of subcortical and cortical
GM atrophy is an ongoing-but-urgent challenge.15 One problem is
the lack of a common standard on which GM can be rated. During
the past years, increasingly large-scale MR imaging databases have
been more freely available to the community,16,17 some of which
are population-representative such as the UK Biobank.18 Such
resources provide the exciting opportunity to define population-
based reference standards on which an individual patient’s GM
can be assessed for signs of atrophy or even hypertrophy.19

Following this strategy, using external big data resources has
been suggested to define age- and sex-matched reference stand-
ards for the assessment of cortical thickness (CTh) suggestive of
atrophy.20 This strategy included a high-resolution parcellation
of the cortex into roughly equal-sized “patches” or “mosaics”—
hence referred to as the “mosaic-approach” (MAP)—and per-
forming nonparametric statistical significance testing for CTh
normality at each patch. This strategy allows precise anatomic
allocation of individual cortical disease burden and has been
shown to be clinically relevant in primary neurodegenerative dis-
orders, including amyotrophic lateral sclerosis,20 progressive lat-
eral sclerosis,21 and frontotemporal dementia.22

In this investigation, we examined the validity of MAP as a
cortical biomarker for MS. Specifically, we tested the 3 following
applications of MAP in MS: 1) discrimination between patients
with MS and controls, 2) classification among different MS clini-
cal phenotypes, and 3) association with established biomarkers

and disease burden in MS, including the Expanded Disability
Status Scale (EDSS), cognitive and fatigue scores, as well as WM
lesion volume. If the MAP can be validated for these applications,
it might be a useful method for monitoring GM cortical burden
in MS clinical practice. Furthermore, the MAP could serve as a
feature for artificial intelligence (AI) applications, allowing per-
sonalized interpretation of single-subject GM pathology.

MATERIALS AND METHODS
Study Cohort and Data Acquisition
We included cross-sectional data from 501 patients with MS (328
women) and 89 healthy controls (HC, 59 women) from a pro-
spective, monocentric observational cohort for this study,
acquired at the Technical University of Munich (TUM, Table).
We focused our analysis on patients with relapsing-remitting MS
(RRMS) (n¼ 465) and additionally included smaller patient sub-
groups, namely clinically isolated syndrome (CIS) (n¼ 19) and
progressive MS (PMS) (n¼ 17, both primary and secondary
PMS) to probe the MAP differences among phenotypes. Patients
were diagnosed by a certified neurologist in accordance with the
2017 revisions of the McDonald cirteria.3 Structural T1WI
MPRAGE data were acquired at the Klinikum Rechts der Isar of
the TUM on 1 of two 3T Philips Healthcare MR imaging systems:
Achieva dStream and Ingenia with identical scanning parameters:
267 sagittal slices, FOV¼ 240 � 252mm, spatial resolution¼
1.00mm isotropic, TR¼ 9ms, TE¼ 4ms, flip angle¼ 8°, no par-
allel imaging. Additionally, a 3D FLAIR sequence was acquired,
which we used to calculate WM lesion volume using the LST tool-
box (https://www.appliedstatistics.de/lst.html).23 Demographic
and clinical details, including age, sex, EDSS, and dominant hand
(for patients) were obtained from our hospital’s Neurology
Department. Additionally, the Multiple Sclerosis Inventory of
Cognition (MuSIC) was available for patients, evaluating neuro-
psychological function specifically in MS.24,25 For the present
study, we used the MuSIC to quantify cognition (with a score
ranging from 0 to 30) and fatigue (ranging from 3 to 21). We
tested differences in mean age between all patients with MS and
HC using Welch 2-sample tests and sex distributions using a x 2

test with a Yates continuity correction, correcting for age and sex.

Demographic details of the study population

MS Clinical Profiles

All Patients
with MS

HC Subgroups

T Test (W)a/v2

Test (C2)bCIS RRMS PMS
CamCAN
(External)

TUM
(Internal)

T Test (W)/v2 Test
(C2) between HC

No. subjects 19 465 17 501 651 89 NA NA
Age (mean) (yr) 58.73

(SD, 12.06)
40.14

(SD, 9.94)
55.58

(SD, 5.23)
40.56

(SD, 10.22)
54.26

(SD, 18.58)
37.36

(SD, 15.06)
W: t (150.61)¼ 9.78,

P, .001
W: t (102.87) ¼ �1.92,

P¼ .056
Sex (female/male) 13:6 305:160 10:7 328:173 330:321 59:30 C2: x 2 (1, N ¼ 740)

¼ 7.03, P¼ .008
C2: x 2 (1, N¼ 590)
, 0.001, P¼ .976

Dominant hand (R/L) 19/0 415/50 16/1 450/51 NA NA NA NA
EDSS (median) (IQR) 0.0 (1.0) 1.5 (2.0) 4.25 (1.75) 1.5 (2.0) NA NA NA NA
Cognition MuSIC

(mean)
28.05

(SD, 3.01)
27.10

(SD, 3.66)
25.82

(SD, 4.05)
27.09

(SD, 3.66)
NA NA NA NA

Fatigue MuSIC
(mean)

6.21
(SD, 2.64)

7.58
(SD, 4.59)

11.65
(SD, 3.32)

7.67
(SD, 4.56)

NA NA NA NA

Lesion volume,
(mean) (mL)

0.98
(SD, 1.23)

5.39
(SD, 8.41)

11.78
(SD, 9.01)

5.45
(SD, 8.40)

NA NA NA NA

Note:—R indicates right; L, left.
aWelch 2-sample t tests were performed to test differences in age between all patients with MS versus TUM (ie, internal) HC.
b x 2 tests were performed to test differences in sex frequencies between all patients with MS versus TUM (ie, internal) HC.
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The study was approved by the local ethics committee of the
TUM and was in accord with the Declaration of Helsinki, and
informed consent was collected from all subjects.

In addition, we considered external reference T1WI data from an
open-source repository by the Cambridge Center for Ageing and
Neuroscience (CamCAN).16 We refer to this external HC group as
“CamCAN-HC” as opposed to the internally acquired “TUM-HC.”
The CamCAN-HC repository shares 651 MPRAGE images (330
women) collected from a 3TMagnetom TrioTrim (Siemens) system at
the University of Cambridge with the following sequence parameters:
256 sagittal slices, FOV¼ 240 � 192mm, spatial resolution¼ 1mm
isotropic, TR¼ 2250ms, TE¼ 2.99ms, flip angle¼ 9°, and generalized
autocalibrating partially parallel acquisition (GRAPPA) factor¼ 2. We
tested differences in mean age between CamCAN-HC and TUM-HC
using the Welch 2-sample t test and sex distributions using a x 2 test
with a Yates continuity correction, correcting for age and sex.

Neuroimaging Data Analysis
T1-weighted data were preprocessed using the fully-automated
recon-all pipeline from the software FreeSurfer26-28 (https://

surfer.nmr.mgh.harvard.edu/fswiki/recon-all) and the Ciftify
package (https://github.com/edickie/ciftify),29 which outputs surface-
based CTh maps (“standard” CTh maps). Before FreeSurfer prepro-
cessing, lesion filling was performed on the basis of T1WI and
FLAIR data using the LST toolbox.23 The MAP approach evaluates
regional CTh by a z score-based approach (Fig 1): Standard CTh
maps19-22 of individual patients are subdivided into 1000 equal-sized
mosaics30 and rated as significantly “thin” or “thick”with respect to a
demographically matched HC group using nonparametric permuta-
tion testing.31 To account for the physiologic effects of sex and aging,
subject-specific reference groups for each patient were generated
(same sex, 6 2years)20 from the collapsed TUM-/CamCAN-HC
groups. The thin patch fraction (TPF) is calculated as the fraction of
all significantly thin patches of a single subject from the total of 1000
patches (“whole-brain TPF”). Thick patch fractions were calculated
analogously. In addition to whole-brain TPF, the TPF was also calcu-
lated for distinct brain lobes, including the frontal, parietal, insular,
temporal, and visual cortices, as well as the motor cortex, which we
refer to as super-ROIs. Further details on the parcellation-based esti-
mation of individual atrophy, definition of reference groups, and def-
inition of super-ROIs are provided in the Online Supplemental Data.

Statistics
The goal of this study was to validate MAP as a biomarker of sev-
eral applications in MS using externally acquired MR imaging
data. We followed a 3-fold strategy for this validation process:

First, we wanted to know whether MAP differentiates between
patients with MS and HC. Therefore, we calculated the thin (thick)
patch fraction for each patient with MS and HC and used a 1-way
ANOVA to test for the main effect of the binary variable “MS diag-
nosis: yes/no” (notice that we did not differentiate amongMS clini-
cal phenotypes in this analysis). We included age, sex, and lesion
volume as variables-of-no-interest into our model, and the a-level
was set to P# .05.

Second, we evaluated whether MAP discriminates among MS
clinical phenotypes. We used 1-way ANOVA to compare differences
of thin/thick patch fractions among 3 phenotypes (CIS, RRMS, PMS)
and HC, testing for the main effect of phenotype. Age, sex, and lesion
volume were modeled as variables-of-no-interest. When the ANOVA
reached significance at P # .05, we conducted post hoc pair-wise
comparisons using Tukey Honestly Significant Difference testing,
which outputs P values adjusted for multiple comparisons (Padj).

Third, we investigated whether MAP is associated with estab-
lished measures reflecting disease burden in MS, including EDSS,
cognition and fatigues scores (both from the MuSIC inventory),
and lesion volume. Associations were tested using general linear
modeling, in which the thin (thick) patch fractions across all patients
were modeled as the dependent and the respective clinical measures
as the independent variable. We tested for the main effect of the in-
dependent variable, setting the a level to P # .05. Age, sex, and
lesion volumes (except for the testing for the main effect, lesion vol-
ume) were included as variables-of-no-interest in the model.

Control Analysis: Standard Approach and Comparison
with MAP
Given that we probed a novel biomarker in this study to quantify
MS cortical disease burden on the basis of parcelled CTh, we also

FIG 1. In the proposed MAP, atrophy (hypertrophy) was estimated on
the basis of CTh maps (A). The cortical surface was subparcelled into 1000
“patches” (black lines in B), and the average CTh for each parcel was calcu-
lated (B). By referencing the value of each parcel to an age-/sex-matched
control group, P maps can be calculated (C) so that the lower end of the
spectrum is suggestive of “atrophy” (cool colors) and the higher end of
“hypertrophy” (hot colors). MAP uses the fraction of any “atrophic”
patches, ie, the TPF, as a metric to estimate cortical disease burden.
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included a control analysis in which we considered unpar-
celled CTh data. We refer to this approach as a “standard
approach.” We repeated all statistical comparisons for unpar-
celled CTh data, ie, using raw CTh values in millimeters, averaged
across the cortex.

Given that we found a significant correlation between EDSS
scores and MAP—but not the standard approach—we probed
this difference formally in a post hoc analysis. We probed using
bootstrapping, in which we first resampled the observed correla-
tions for each method (with replacement, 999 replicates) and
then calculated the respective bootstrapped correlation coefficients
(r*Standard/r*Mosaic) and assessed their difference (Dr*). Notice that
we flipped the sign of the standard approach to achieve compara-
bility (given that atrophy corresponds to less but CTh to more thin
patches). We calculated the 95% CI for Dr* and rejected the null
hypothesis of no difference in correlations if Dr* ¼ 0.00 was not
included in the CI. Additionally, we ran another formal test com-
paring the correlation coefficients by using the cocor package in R
(https://cran.r-project.org/web/packages/cocor/index.html),32 which
offers various methods for comparing correlation differences. We

chose a Monte Carlo testing scheme developed for comparing
dependent correlations.33

Quantile Comparisons
In this study, we calculated TPFs using a mixed HC control data
set, consisting of a smaller subset that was acquired at the same
center as the MS patient cohort (TUM-HC) and a larger subset
from an external center (CamCAN-HC). To estimate the effects
of the different origins of the 2 HC data sets, we ran quantile (Q)
analyses comparing the whole-brain TPF between TUM-HC and
TUM-MS. We inspected QQ-plots between the 2 data sets and
compared quantile ranks between the 2 groups for some exem-
plary quantile scores (corresponding to the 50%, 80%, and 95%
quantile ranks in the TUM-HC group).

RESULTS
Demographics
The demographic profiles of the study populations are summar-
ized in the Table. Adequate age-matching between all patients
with MS (mean, 40.56 [SD, 10.22] years) and TUM-HC (mean,
37.36 [SD, 15.06] years) was suggested by a nonsignificant t test
(t¼�1.92, P¼ .056). Furthermore, x 2 testing confirmed compa-
rable sex distributions between the study groups (x2 , 0.001,
P¼ .976). The clinical scores suggested relatively mild disease
burden of the MS study group, as evidenced by a median EDSS
score of 1.5 (interquartile range [IQR]¼ 2.0), a mean cognitive
MuSIC score of 27.09 (SD, 3.66), a mean MuSIC fatigue score of
7.67 (SD, 4.56), and mean lesion volume of 5.45 (SD, 8.40) mL.
TUM-HC differed from CamCAN-HC, both in terms of age
(t¼ 9.78, P, .001) and sex distributions (x 2 ¼ 7.03, P¼ .008).
The control group sizes for each individual were roughly equal,
with a median of n¼ 30.0 (IQR¼ 6.0).

MAP Differentiates Patients with MS from HC
First, we tested whether MAP differentiates patients with MS from
HC (Fig 2, note that thin and thick patches were found for MS as
well as HC). T tests revealed that both thin (Fig 2A) as well as thick
patch counts (Fig 2B) were significantly different between the
study groups. Note that patients with MS had more thin patches
(P, .001) but fewer thick patches (P¼ .002) than HC. Also, the
standard approach showed thinner mean CTh in patients with MS
versus HC (P, .001). See the Online Supplemental Data for fur-
ther statistical details.

MAP Discriminates between MS Phenotypes
Second, we tested whether MAP discriminates among MS pheno-
types (Fig 3): One-way ANOVAs suggested significantly different
thin (F [4558]¼ 13.84, P, .001, Fig 3A) as well as thick (F
[4558]¼ 7.663, P, .001, Fig 3B) patch fractions among the MS
clinical phenotypes. Post hoc Tukey Honestly Significant
Difference testing suggested that the TPFs yielded higher differ-
ential power compared with the thick patch fraction, given that
more MS clinical phenotypes could be pair-wise differentiated
(PMS had more thin patches versus HC (Padj ,.001), CIS (Padj
,.001), and RRMS (Padj ,.001) and also demonstrated more
thin patches in RRMS versus HC (Padj ,.001). In terms of thick
patches, only the pair-wise comparisons between RRMS versus

FIG 2. We investigated whether MAP differentiates patients with MS
from HC. We found that both the primary outcome of MAP, ie, the TPF
(A), as well as its opposite, the thick patch fraction (B), significantly discrimi-
nate MS from HC. Notice the opposed directionality: MS yields more thin
but fewer thick patches. Boxplots show median (notched), IQRs, and out-
liers (dots); boxplot width reflects square root of sample sizes.
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HC (Padj ,.001) and PMS versus HC (Padj ¼ .009) were signifi-
cant, suggesting fewer thick patches in the respective patient
groups. Note that the standard approach also suggested different
average CTh among the clinical phenotypes (F [4564]¼ 35.24,
P, .001), but see the Online Supplemental Data for the statistical
details.

MAP Is Associated with Established Scores Reflecting MS
Disease Burden
Third, we tested whether MAP is associated with established
scores reflecting MS disease burden (Fig 4): General linear mod-
eling suggested significant correlations of all analyzed metrics
with the TPF, including EDSS (P¼ .0151), the cognitive MuSIC
score (P¼ .035), the fatigue MuSIC score (P¼ .017), and lesion
volume (P, .001). Of note, the standard approach, ie, raw aver-
aged CTh values, did not show significant associations with the
EDSS score (P¼ .132). Bootstrapping suggested that the differen-
ces in correlations between EDSS and TPF versus EDSS and the
standard approach were significantly different, given that the
95% CI interval did not include 0.00 (Online Supplemental
Data). Correspondingly, Monte Carlo resampling demonstrated

FIG 3. We investigated whether MAP discriminates among MS clinical
phenotypes: Especially, the TPF (A) yielded high potential for classify-
ing among MS clinical phenotypes because it was significantly differ-
ent between PMS and HC/CIS/RRMS and, moreover, discriminated
RRMS from HC. The thick patch count (B) was less sensitive and only
differentiated SPMS and RRMS from HC. Boxplots show median
(notched), IQRs, and outliers (dots); boxplot width reflects the square
root of sample sizes. The asterisk denotes statistical significance at
P, . 05; double asterisks, P, . 001 in post hoc testing.

FIG 4. We tested associations of MAP with established scores of
MS disease burden: We found that the primary outcome of MAP,
ie, the TPF, was significantly associated with EDSS scores (A), the
cognitive MuSIC score (B), the fatigue MuSIC score (C), and lesion
volume (D).
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this significance formally (z¼ 3.413, P¼ .0006). Statistical details
of the ANOVAs can be found in the Online Supplemental Data.

MAP Allows Straightforward Visualization of Region-Wise
Atrophy
In Fig 5, we demonstrate the potential of MAP for straightfor-
ward visualization of individualized atrophy (or hypertrophy).
Figure 5A shows a brain map from a single patient with RRMS,
whereas blue patches indicate significantly “atrophic,” and red,
significantly “hypertrophic” areas. Furthermore, the method
allows further anatomic refinement: For example, in Fig 5B, we
defined 6 super-ROIs, ie, anatomically labeled accumulations of
patches around the motor, frontal, parietal, insular, temporal,
and visual cortices. With this partitioning, one can assess the TPF
per super-ROI instead of across the whole cortex. This informa-
tion can be visualized straightforward, eg, using spider plots, such
as the one shown in Fig 5C, which shows patient yields of rela-
tively high disease burden in the insular and temporal cortices
but relatively little involvement of the visual cortices.

Quantile Analyses
To estimate the effects of different data sources of HC (TUM versus
CamCAN), we ran quantile comparisons (Online Supplemental

Data). We found that TUM-MS had consistently higher TPF quan-
tile scores compared with TUM-HC (Online Supplemental Data).
Moreover, we found that the quantile rank of the 50% (80%/95%)
TUM-HC quantile score (TPF¼ 0.089/0.149/0.263) corresponded
to the 36% (67%/90%) TUM-MS quantile rank (Online Supplemental
Data), suggesting that TUM-MS yielded more TPFs.

DISCUSSION
In this study, we tested the validity of a relatively novel biomarker
for assessing cortical disease burden in patients with MS. This
strategy is based on averaging CTh across a high-resolution par-
cellation (No. of patches ¼ 1000) and testing each of those
patches for significantly different CTh with reference to an age-/
sex-matched HC group. The method was hence dubbed MAP,
and its primary outcome measure is the thin (thick) patch frac-
tion, which indicates the fraction of significantly atrophic (hyper-
trophic) patches. We tested 3 potential clinical applications of
MAP for MS, demonstrating the following: 1) both thin and thick
patch fractions successfully differentiate patients with MS from HC,
2) TPF discriminates among MS clinical phenotypes, and 3) TPF is
significantly associated with established measures reflecting MS dis-
ease burden, including EDSS, cognition and fatigue scores, as well
as lesion volume. Of note, the standard approach did not show a
significant correlation to EDSS. Post hoc testing using resampling
approaches demonstrated the superiority of MAP versus the stand-
ard approach with respect to the association with EDSS. Finally,
MAP can also be used for visualizing localized atrophy in a single-
subject manner, as demonstrated in Fig 5.

Potential of MAP for Care of Patients with MS, Clinical
Trials, and AI Applications
This study provides evidence that MAP, a cortical biomarker
constructed from T1WI data, can provide clinically relevant in-
formation regarding GM pathology in MS. MAP is a software-
supported MR imaging evaluation system that assesses T1WI
data of single patients with respect to a control group to detect
deviations from normality. Of particular importance, we consid-
ered reference data from open-source MR imaging repositories
(ie, the CamCAN database) so that our results suggest the general
validity of rating individual data with respect to externally
acquired HC. Furthermore, our findings suggest that although
GM estimation is known to be affected by differences in MR
imaging hardware and sequence parameters such as TI,34,35 such
a system has diagnostic value. This is of particular importance
given the emerging need for quantification of GM for precisionmedi-
cine in MS.15 Provided that increasing open-source population-based
MR imaging data sets become available, our findings suggest that
such resources can be used as adequate reference standards for per-
sonalized interpretation ofMR imaging data.36

Of note, MAP allows straightforward visualization of the to-
pography of probable disease burden for single patients (Fig 5A),
which may prove invaluable for MS diagnosis, given the vast het-
erogeneity of GM atrophy patterns.37,38 As we showed before
investigating patients from the motor neuron disease spectrum,
MAP can readily be used for monitoring atrophy progression in
individual patients.20,21 Although we focused our investigation
on a variant of MAP that estimates disease burden across the

FIG 5. MAP allows visualizing individual brain maps with regionally
specific estimations of atrophy (blue) or hypertrophy (red) based on
comparisons with a matched reference group (A). This method may
be further refined anatomically; for example, instead of summing thin
patches across the entire cortex, one can specify super-ROIs (B) such
as motor (red), frontal (purple), parietal (yellow), insular (light blue), tem-
poral (green), and visual (dark blue) cortices. Thin/thick patch fractions
can then be calculated for each of these super-ROIs and used for an
individual and regionally specific illustration, eg, in a spider plot (C).
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entire cortex, we have also shown that further anatomic refine-
ment of the method can be implemented easily so that disease
burden can be specified for distinct anatomic areas of interest
such as the motor cortex or frontal lobe. Such anatomic refine-
ment is likely to have even more information for the care of
patients with MS, given the demonstrated clinical relevance of
the topography of atrophy patterns in MS.39-41

Another potential application of MAP for MS is its implemen-
tation as an outcome variable in clinical trials. Whereas numerous
outcome measures have been defined for MS,42 a personalized out-
come measure to quantify cortical GM disease burden has not yet
been established. Given that neurodegeneration plays a crucial role
in controlling disability progression in MS,43,44 this is a gap that
needs to be filled. We believe that MAP, via its primary outcome
measure, TPF, can provide a feature for enhancing personalized
detection of cortical abnormality using AI-based applications.

Limits
The current study has limitations that need to be further eval-
uated before any potential clinical translation of MAP into MS
clinical practice. Currently, the main drawback of the here-pro-
posed strategy is the overall small sample size of the reference
group. Although we have included .700 HC from both exter-
nally and locally acquired data resources in our investigation, the
size of this reference group was considerably smaller for an indi-
vidually assessed patient due to age- and sex-matched selection.
This feature results in discrete reference distributions and, hence,
P values in permutation testing, which might, in turn, hamper
statistical power.31 It might also explain why both thin and thick
patches were found for our internal HC group, whereas one
would expect to find no such differences for a perfect external ref-
erence population. Nevertheless, thin patches being significantly
higher in MS demonstrates the discriminative power of MAP. As
increasingly large-scale population-representative MR imaging
databases are becoming available, this availability provides a
promising opportunity for boosting the sizes of reference data,
which is essential for further statistical refinement of MAP and
thus an ongoing effort in our lab.

Another limitation is that the age and sex distributions from
the 2 HC groups differed. The externally acquired CamCAN-HC
were, on average, markedly older than the internally acquired
TUM-HC. Notice, however, that the difference was expected,
provided CamCAN-HC were recruited to match uniform sex
and age distributions throughout the ages (spanning from
�20 years to �90 years) and TUM-HC were recruited to match
patients with MS from TUM. Note, however, that we constructed
age- and sex-matched “personalized” control cohorts for each
individual (see the Online Supplemental Data for details).
Furthermore, both age and sex were included in all statistical
assessments as variables-of-no-interest. Notice, however, that
within linear regression modeling, this feature can reduce poten-
tial confounding effects but not fully eliminate them.45

Even with such further statistical refinement, MAP as presented
herein can only be 1 component of a biomarker for MS. Despite the
established significance of cortical atrophy for clinical manifesta-
tion,46,47 MS is a multidimensional disorder that affects a vast range
of functional systems.48 Therefore, a comprehensive MS biomarker

requires multivariate construction, also taking into account, beyond
MR imaging metrics, molecular measures such as neurofilaments,
metabolites, and microbiomes.49 In terms of neuroradiologic
markers, tools reflecting individual subthalamic GM atrophy and
WM microstructure will provide further important insight for pre-
cise assessment of overall CNS disease burden and will, thus, allow
more accurate personalized patient management in MS.50

Finally, althoughMAP is calculated and can be visualized for sin-
gle patients, the present validation was based on group-level statis-
tics. Therefore, we cannot claim MAP as a personalized cortical
biomarker in its current form. A truly individualized assessment
would typically rely on AI-based methods. However, MAP and TPF
provide a validated feature with which AI-algorithms can be trained.

Despite its limitations, the MAP method, even in its current
form, offers a neuroradiologic tool for software-supported assess-
ment of cortical disease burden in MS. It can be readily collected
on a regular basis in a timesaving, digital way and be visualized for
individuals to localize potential cortical disease burden. Thus,
MAP provides an objective, reliable, automatized, and digital solu-
tion for MS diagnostics, monitoring cortical disease progression,
and may ultimately serve as an outcome measure in clinical trials,
given its demonstrated relevance for neurologic impairment.

CONCLUSIONS
This study demonstrates the validity of using external T1WI data for
referencing single-patient data to detect signs of abnormal CTh in
MS (MAP). MAP had previously been shown to yield relevant diag-
nostic information in primary neurodegenerative disorders includ-
ing ALS, PLS, and FTD. Here, we showed that the primary outcome
measure ofMAP, the TPF, differentiatesMS fromHC, discriminates
among MS phenotypes, and is associated with established scores of
MS disease burden, including EDSS, cognitive and fatigue scores, as
well as lesion volume. Provided this evidence, we believe that MAP
can contribute to a neuroradiologic biomarker for MS diagnostics.
Furthermore, MAP can accelerate the development of a personalized
MS biomarker since it provides a feature on which AI-based algo-
rithms can be trained. Such individual features can enhance preci-
sion medicine in this highly heterogeneous disorder.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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