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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Automated Segmentation of MRI White Matter
Hyperintensities in 8421 Patients with Acute Ischemic Stroke
Hosung Kim, Wi-Sun Ryu, Dawid Schellingerhout, Jonghyeok Park, Jinyong Chung, Sang-Wuk Jeong, Dong-Seok Gwak,

Beom Joon Kim, Joon-Tae Kim, Keun-Sik Hong, Kyung Bok Lee, Tai Hwan Park, Jong-Moo Park, Kyusik Kang, Yong-Jin Cho,
Byung-Chul Lee, Kyung-Ho Yu, Mi Sun Oh, Soo Joo Lee, Jae-Kwan Cha, Dae-Hyun Kim, Jun Lee, Man Seok Park, Hee-Joon Bae,

and Dong-Eog Kim

ABSTRACT

BACKGROUND AND PURPOSE: To date, only a few small studies have attempted deep learning–based automatic segmentation of

white matter hyperintensity (WMH) lesions in patients with cerebral infarction; this issue is complicated because stroke-related
lesions can obscure WMH borders. We developed and validated deep learning algorithms to segment WMH lesions accurately in
patients with cerebral infarction using multisite data sets involving 8421 patients with acute ischemic stroke.

MATERIALS AND METHODS:We included 8421 patients with stroke from 9 centers in Korea. 2D UNet and squeeze-and-excitation (SE)-
UNet models were trained using 2408 FLAIR MRIs from 3 hospitals and validated using 6013 FLAIR MRIs from 6 hospitals. WMH segmen-
tation performance was assessed by calculating the Dice similarity coefficient (DSC), the correlation coefficient, and the concordance
correlation coefficient compared with a human-segmented criterion standard. In addition, we obtained an uncertainty index that repre-
sents overall ambiguity in the voxel classification for WMH segmentation in each patient based on the Kullback-Leibler divergence.

RESULTS: In the training data set, the mean age was 67.4 (SD, 13.0) years, and 60.4% were men. The mean (95% CI) DSCs for UNet in
internal testing and external validation were, respectively, 0.659 (0.649�0.669) and 0.710 (0.707�0.714), which were slightly lower
than the reliability between humans (DSC¼ 0.744; 95% CI, 0.738�0.751; P ¼ .031). Compared with the UNet, the SE-UNet demon-
strated better performance, achieving a mean DSC of 0.675 (95% CI, 0.666–0.685; P , .001) in the internal testing and 0.722 (95% CI,

0.719�0.726; P , .001) in the external validation; moreover, it achieved high DSC values (ranging from 0.672 to 0.744) across multiple
validation data sets. We observed a significant correlation between WMH volumes that were segmented automatically and manually
for the UNet (r ¼ 0.917, P , .001), and it was even stronger for the SE-UNet (r ¼ 0.933, P , .001). The SE-UNet also attained a high
concordance correlation coefficient (ranging from 0.841 to 0.956) in the external test data sets. In addition, the uncertainty indices in
most patients (86%) in the external data sets were ,0.35, with an average DSC of 0.744 in these patients.

CONCLUSIONS:We developed and validated deep learning algorithms to segment WMH in patients with acute cerebral infarction using
the largest-ever MRI data sets. In addition, we showed that the uncertainty index can be used to identify cases in which automatic WMH
segmentation is less accurate and requires human review.

ABBREVIATIONS: Cb ¼ bias correction factor; DSC ¼ Dice similarity coefficient; HD ¼ Hausdorff distance; KL ¼ Kullback-Leibler; ReLU ¼ rectified linear
unit; SE ¼ squeeze-and-excitation; WMH ¼ white matter hyperintensity

White matter hyperintensities (WMHs), characterized by
high signal intensity on T2-weighted MRI and FLAIR

MRI, is commonly observed among the elderly.1 WMHs are

associated with an increased risk of stroke,2 adverse stroke out-
comes,3 dementia,4 and depression.5 Manual segmentation ofWMH
lesions by humans is considered the criterion standard for
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volumetric assessment of WMHs.6 However, given the high preva-
lence of variously-sized scattered WMHs, such a manual procedure
is laborious, time-consuming, and prone to rater-dependent bias
and errors,7 particularly in large multicenter studies.

Approximately 40% of stroke survivors eventually have cognitive
impairment.8 The extent and expansion of WMHs are intimately
correlated with vascular cognitive impairment.4,9,10 Nevertheless,
there is little evidence available to indicate that attenuating WMH
progression can prevent functional decline, partly due to incon-
sistent volumetric measurement of WMHs.11 Hence, to further
advance our understanding of WMH in patients with ischemic
stroke, precise and consistent WMH segmentation is required.
Recent advances in deep learning approaches have markedly
improved the automatic segmentation of brain lesions.12-14

Several studies on healthy elderly brains yielded promising results
for fully automated WMH segmentation.12,15,16 However, patients
with cerebrovascular lesions, such as acute or chronic infarcts,
complicate these analyses because focal stroke-related lesions can
obscure WMH borders.17 This area is understudied, representing
a gap in our clinical armamentarium, which requires improved
methods. Automated segmentation of WMH versus infarcts will
contribute to more accurate quantification of acute-versus-chronic
ischemia–related MR lesions. This contribution will help better
predict poststroke outcomes such as WMH-related clinical wor-
sening, neurologic recovery, and functional outcomes.3 It will also
support research onWMH in stroke and dementia.

Only a few studies have attempted automatic segmentation of
WMH lesions in patients with ischemic stroke.18,19 One study
(n¼ 250) using convolutional neural networks achieved a Dice
similarity coefficient (DSC) of near 70% in the test data set.18 A
more recent study (n¼ 429) used the state-of-the-art UNet and
UNet with squeeze-and-excitation (SE) blocks (SE-UNet),

achieving a higher DSC value of 74%–76%.19 These single-center
studies with small sample sizes cannot address the notorious
“domain shift problem,” in which an algorithm that performs
well in the source domain proceeds to perform poorly in the target
domain.20 Moreover, because the acute and chronic infarcts
obscure the boundaries of WMHs, the interrater and intrarater
reliability of the manual segmentation of WMHs is reduced. This
less reliable voxelwise labeling of WMHs reduces the quality of
the training data and compounds the problem. The impact of this
factor on the segmentation performance of deep learning algo-
rithms has not yet been systematically investigated.

In this study, we first trained UNet and SE-UNet to segment
MWH lesions using 3 different stroke center data sets involving
2408 patients with ischemic stroke and subsequently validated
the deep learning algorithms using 6 separate stroke center data
sets involving 6013 patients. Next, we used an uncertainty mea-
sure21 (based on the Kullback-Leibler divergence22) from the UNet
to investigate the possibility of predicting the accuracy of WMH
segmentation. We also assessed lesion information that could
affect the segmentation accuracy, such as WMH burden and
infarct location and volume.

MATERIALS AND METHODS
Data Sets
The Korean Nationwide Image-Based Stroke Database project is
a prospective multicenter study in Korea.2,3,17,23 From May 2011
to November 2013, we consecutively enrolled 10,423 patients
with ischemic stroke who were admitted to the 9 participating
centers within 7 days of symptom onset. We excluded the follow-
ing patients: those with a contraindication to MRI (n¼ 315), poor
quality or unavailability of FLAIR MRI or DWI (n¼ 1632), and
MRI registration error (n¼ 55), leaving 8421 evaluable patients.
The institutional review boards of all the participating centers
approved the study. All patients or their legally authorized repre-
sentatives provided a written informed consent for study partici-
pation. Brain MRI was performed on 1.5T (n¼ 6583) or 3T
(n¼ 1803) MRI systems. FLAIR image protocols were TE ¼ 76–
187 ms, TR ¼ 6000–11568 ms, voxel size ¼ 1� 1 � 3–7 mm3,
spacing ¼ 0.3–1.0 mm, slice thickness ¼ 3–7 mm, FOV ¼ 175–
280 mm, and matrix size (row)¼ 256–768.
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SUMMARY

PREVIOUS LITERATURE:WMH on FLAIR MRI is a quantifiable risk factor for stroke and dementia. Manual WMH segmentation is
laborious, supporting automated segmentation methods, but these face difficulties in implementation. Specifically, cerebral
infarcts (acute) can obscure the boundaries of WMH lesions (chronic), degrading performance. The few published studies in the
current literature did not have sufficient data to undergo full external validation, limiting their ability to address the well-known
“domain shift problem”: ie, an algorithm that performs well in its source domain but poorly when applied in the target domain.

KEY FINDINGS: We developed deep learning algorithms to segment WMH in patients with ischemic stroke using the largest-
ever data set (n¼ 8421 patients), with full validation. Our SE-UNet algorithm achieved high segmentation performance, with DSC
values from 0.672 to 0.744 across multiple validation data sets (compared with expert criterion standards), with low (,0.35)
uncertainty indices in 86% of patients.

KNOWLEDGE ADVANCEMENT: Deep learning algorithms developed and using large MRI data sets from multicenter patients
with stroke can accurately segment WMH lesions, distinguishing FLAIR lesions from DWI-positive infarcts without relying on
DWIs. The uncertainty index can be used to identify those WMH segmentation cases that require human inspection.
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All scans were transferred to the Korean Brain MRI Data
Center for central data storage and quantitative analysis. As
previously reported,2,3,17,24-26 each patient’s high signal inten-
sity WM lesions on FLAIR images were manually segmented
from scratch by 1 of 5 research assistants with at least 5 years’
experience in WMH segmentation under careful supervision by
an experienced vascular neurologist (W.-S. Ryu; Online Supplemental
Data). When chronic WM lesions on FLAIR and acute infarct lesions
on DWI overlapped or were adjacent, we determined the extent
and distribution of FLAIR WMH on the basis of lesions in the
hemisphere contralateral to the acute infarct location, because
WMH symmetry of morphology and distribution is quite often
observed between hemispheres. In preliminary investigations, we
found that the performance of deep learning models reached a
plateau at about 2000 patients’ FLAIR MRIs. Additionally, we
sought to test the robustness of our algorithms across various
external data sets. Hence, a total of 2408 patients’ FLAIR MRIs
from 3 hospitals were designated as a training data set, and the
remaining 6013 patients’ FLAIR MRIs from 6 hospitals were des-
ignated as 6 external validation data sets. A training data set was
divided into 6:2:2 ratios by random subsetting as training, valida-
tion, and internal test data sets.

Data Preprocessing
We applied 2D B-spline interpolation to resize the FLAIR slices
to a dimension of 256� 256 pixels. Next, we performed slicewise
intensity normalization in a uint8 format, ensuring that pixel
intensities on each slice ranged from 0 to 255. We subsequently
performed casewise intensity equalization to ensure comparabil-
ity in the imaging data across different MRI vendors using a his-
togram of 32 bins and shifting the highest peak of the histogram
value to 150. Then, we generated a binary brain mask by includ-
ing all voxels with signal intensities greater than a threshold value
of 30 in the histogram domain. We filled tiny holes in this brain
mask using binary_fill_holes (SciPy.ndimage).27 Last, we per-
formed the Gaussian normalization process to yield pixel
intensities with a mean of zero and an SD of 1 for the brain
area under the brain mask, thereby producing optimal arrays
for training a deep learning model.

Deep Learning Algorithms: UNet versus SE-UNet Ensemble
Network Architecture
We used the 2 neural network architectures from the litera-
ture,28,29 the 2D UNet and the 2D SE-UNet (Online Supplemental
Data). The 2D UNet has an encoder path and a decoder path, each
with 3 resolution steps. In the encoder path, each layer has three
3� 3 convolutions and batch normalization, which is followed by
a rectified linear unit (ReLU) activation function, and a 2� 2 max
pooling layer for downsampling. In the decoder path, each layer
uses a deconvolution with a kernel size of 2� 2, followed by three
3� 3 convolutions and batch normalization with ReLU. The net-
work has shortcut connections from the layers in the encoder path
to the corresponding layers with the same resolution in the de-
coder path. Finally, a fully connected layer with a 32-channel input
was added to the end of the decoder path and activated using a sig-
moid function, with random initial nonuniform weights. We used
the Dice loss function. For the learning and optimization step, we

used the Adam optimizer with a 1e-3 learning rate and 1e-3/300
decay rate, 50 epochs. For the training, we did not use data aug-
mentation techniques.

The 2D SE-UNet has a architecture similar to that of the 2D-
UNet but with an additional SE-block and global average pooling
applied after the convolution layer in the downsampling path.
The SE block assigns weights to the network channel. Squeeze
involves the portion of the layer that conducts global pooling,
which embeds global information. Excitation recalibrates adap-
tively through ReLU and sigmoid activations.28 The 2D-UNet
and 2D SE-UNet models were trained using the same training
data set. Each model was initialized with different random
weights to ensure variety. We arbitrarily set the threshold of 0.5
to designate voxels with WMHs. The scripts for training deep
learning models are available at GitHub (https://github.com/
jlk-jhpark/Whitematter-hyper-intensity-segmentation.git).

The Uncertainty Index That Represents Overall Ambiguity
in the Voxel Classification of WMH Segmentation in Each
Patient
To calculate uncertainty, we used a deep ensemble of 5 different
models. We used soft voting to combine the models. The individual
networks share the same architecture but were trained on different
90% subsets of the training data set, each with different random ini-
tializations to ensure variability.30,31 The voxel-level Kullback-Leibler
(KL) divergence values were calculated using the SciPy.stats.entropy
module.30 In the formula, the average of the predicted probabilities
from the 5 models was used as input data, along with a prior proba-
bility of 0.5. This prior probability indicates that each voxel has an
equal chance of being predicted as WMH. Because we assigned a
prior probability of 0.5, the large KL divergence indicated low uncer-
tainty. Next, we calculated the proportion of voxels with a substan-
tial divergence value (,0.5) of all predicted voxels in each patient.
Thus, the following patient-level uncertainty was calculated as

Uncertainty index5

R predicted WMH pixels with divergence value , 0:5
R predicted WMH pixels

:

Segmentation Performance Evaluation Metrics
The following metrics were used to evaluate the automated
WMH segmentation methods compared with manual WMH
segmentation.

• DSC ¼ 2� (true-positive WMH voxels) / (true WMH voxels
1 predicted WMH voxels)

• Hausdorff distance (HD) between 2 sets of points, represent-
ing segmented regions (true-positive WMH X and predicted
WMH Y), is defined as follows: HD (X, Y) ¼ max[HD(X, Y),
HD(Y, X)], where the one-sided HD from X to Y is defined as
hd X; Yð Þ5max

x2X
min
y2Y

kx-yk.

Correlation coefficient Rð Þ5
n �

X
xy�

X
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Where n indicates number of samples; x, automated WMH vol-
ume; y, manual WMH volume.

Experiment and Analysis
We implemented the networks in Python 3.6.10 using Keras
2.4.3. The baseline network (UNet, SE-UNet) for training was
trained on a GeForce GTX 1080 Ti GPU with 11.0 CUDA
Version, taking 13 minutes per epoch for 41,854, 14,303, 14,039
slices with the training/validation/test split of 60%, 20%, 20%. We
empirically chose a batch size of 8.

To evaluate the interrater reliability of WMH segmentation,
we computed themeanDSC andmean correlation coefficient among
5 research assistants using 135 randomly-sampled FLAIR images.

We validated deep learning models in 6 external data sets
using DSC. A relationship between automated WMH volume
and manual WMH volume was assessed using a correlation coef-
ficient. After training on 100, 200, 500, 1000, 1500, and 2408
patients’ FLAIR MRIs, the mean (SD) DSC in the combined
external data set was calculated to evaluate the WMH segmenta-
tion performance as the amount of training data increases. In
addition, we assessed the model performance after stratifying
patients by infarction volume, infarction location, uncertainty,
and WMH subregion. The infarction volume was categorized
with cutoff points of 1.7 and 14mL.15 WMH volumes were
categorized into tertiles of the combined external validation
data sets. The infarction location was categorized as the cortex,
corona radiata, basal ganglia and internal capsule, thalamus,
midbrain, pons, medulla, and cerebellum. Infarct location in-
formation was retrieved from a prospective stroke registry. In
addition, the external validation data set was divided according
to uncertainty levels of 0.2, 0.4, 0.6, and 0.8. To differentiate
WMH subregions (periventricular versus deep), we trained a
deep learning algorithm that automatically segments the ven-
tricles in FLAIR images. A total of 145 patients’ FLAIR images
were used for the ventricle-segmentation learning using UNet,
and the model showed a validation DSC of 0.9034. Then, a dis-
tance transform based on the OpenCV algorithm32 was used to
define the periventricular region within 10 and 7.5 mm from
the ventricular surface. WMH volumes observed in this region
were classified as periventricular WMH, whereas WMH vol-
umes observed outside this region were classified as deep
WMH. In addition, we calculated the mean and 95% CI of the
uncertainty index for the external validation data sets after
stratification by DSCs (with the cutoff values of 0.60, 0.65,
0.70, 0.75, and 0.80) and predicted WMH volume (in quartiles).

Statistical Analysis
To compare subjects’ characteristics between training and test
data sets, we used the ANOVA or the Kruskal-Wallis test for the
analysis of continuous variables and the x 2 test for categoric vari-
ables as appropriate. Mean DSC and Hounsfield unit values were
compared between the UNet and the SE-UNet using paired
t tests. We compared the segmentation performance between
automated methods that were applied to the test data set
using ANOVA and Bonferroni post hoc analyses. We then com-
pared the segmentation performance between test data sub-
groups stratified by infarct location, tertiles of WMH volume,

uncertainty, and WMH subregion. To evaluate the agreement
between automated WMH segmentation volume by SE-UNet
and manual segmentation volume, we used the concordance
correlation coefficient, which is commonly used to assess agree-
ment between 2 raters or 2 methods to measure a response when
the data are measured on a continuous scale.33 A concordance
correlation coefficient of .0.8 has been suggested as an excellent
level of agreement.34 In addition, we measured a bias correction
factor (Cb), which measures how far the best-fit line deviates from
the 45° line (measure of accuracy).33 When there is no deviation
from the 45° line, the Cb. is 1. The Pearson correlation coefficient
r measures how far each observation deviates from the best-fit
line (measure of precision).33 Data were analyzed using Stata
(StataCorp), and a 2-sided P value , .05 considered statistically
significant.

RESULTS
Baseline Characteristics
Compared with the subjects in the combined data set for training
and validation and internal testing (mean age, 67.4 [SD, 13.0] years;
60.4% men), those in the 6 data sets for external testing had
significantly different clinical characteristics in terms of age,
last-known-well time to admission, stroke subtype, and the
frequencies of previous stroke history, coronary artery dis-
ease, and other cardiovascular risk factors (Table). Moreover,
MRI vendors, magnetic field strength, and imaging parame-
ters were variable across the data sets (Online Supplemental
Data). Within the data sets for external testing, subjects’
mean age and the prevalence of risk factors also varied across
the data sets. These results show that we used distinct train-
ing and validation data sets, which should make the deep
learning models more robust and effective on new, previously
unseen data.

Algorithm Performance for Automatic Segmentation of
WMH Lesions
Overall, the mean DSC values for the UNet segmentation on the
internal test and external validation data sets were, respectively,
0.659 (95% CI, 0.649� 0.669) and 0.710 (95% CI, 0.707� 0.714),
which were slightly lower than the reliability between human raters
(mean, 0.744; 95% CI, 0.738� 0.751; P¼ .031; Online Supplemental
Data). The mean HD values for the UNet on the internal test and
external validation data sets were 10.44 (95% CI, 9.75–11.14) and
10.44 (95% CI, 10.22–10.65), respectively. The mean values
for the SE-UNet segmentation on the internal test and exter-
nal validation data sets were, respectively, 0.675 (95% CI,
0.666–0.685) and 0.722 (95% CI, 0.719–0.726), exhibiting
overall superior performance over the UNet (both P , .001).
The mean HD for the SE-UNet on the internal test and external
validation data sets were, respectively, 9.09 (95% CI, 8.43–9.74)
and 8.98 (95% CI, 8.77–9.18), again demonstrating superior per-
formance over the UNet (both P , .001). The mean (SD) proc-
essing times for the UNet and the SE-UNet on the overall
external data sets were 67.0 (9.6) ms and 74.0 (6.6) ms, respec-
tively (P, .001).

In addition, deep learning algorithms showed similarly high
DSCs across multiple external validation data sets with the values
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ranging from 0.672 to 0.744. In line with these findings, WMH
volumes that were segmented automatically and manually showed
a strong correlation for the UNet (r¼ 0.917, P, .001) and the SE-
UNet (r¼ 0.933, P , .001) in the external validation data sets.
Because the SE-UNet outperformed the UNet, the subsequent
analyses were performed using the SE-UNet. The mean DSC for
the external data sets increased from 0.659 to 0.699 when the
training data set size was increased from 100 to 500 (Online
Supplemental Data). However, with a larger sample size beyond
500 up to 2048, there was little but statistically significant
improvement in DSC (from 0.699 to 0.722; P , .001), suggest-
ing a saturation effect.

Impact of Volume and Location of Acute Infarct and
WMH on the Accuracy of Automatic Lesion Segmentation
As shown in Fig 1A, the mean DSC (for the external data sets)
was significantly lower in the large infarct group (.14mL,
DSC¼ 0.695; 95% CI, 0.688–0.703) and the moderate infarct
group (1.7–14mL, DSC¼ 0.721; 95% CI, 0.715–0.727), compared
with the small infarct group (,1.7mL, DSC¼ 0.737; 95% CI,
0.732–0.742; both P , .001). After stratification by infarct loca-
tion (Online Supplemental Data), mean DSCs were comparable
across the groups, except for the medulla infarct group with its
DSC being,0.7.

The mean DSC for the highest tertile of WMH volume was
significantly greater than that for the lowest tertile (DSC ¼ 0.617
versus 0.813, P , .001; Fig 1B). In addition, the segmentation
accuracy for periventricular WMH was significantly higher
than that for subcortical WMH (Online Supplemental Data),
regardless of the definition of the periventricular region by the
distance from the ventricular surface: 10 mm (DSC ¼ 0.751

versus 0.617; P, .001) and 7.5-mm cutoff (DSC ¼ 0.751 versus
0.628; P, .001).

Predictors of the Accuracy of AutomaticWMH Segmentation:
Uncertainty Index, Infarct Volume/Location, andWMH
Volume
The mean patient-level uncertainty index for the external test
data sets was 0.2214 (SD, 0.1184) (see Fig 2 for representative
cases with low or high uncertainty indices). The uncertainty
index was inversely correlated with the DSC in the combined
external data set (r ¼ –0.753, P , .001; Fig 3A). Regardless of
the infarct size, the DSC was similar for subjects in the lowest
uncertainty group (0–0.2). In higher uncertainty groups (0.4–
1.0), however, large infarcts (.14mL) were associated with a
lower segmentation accuracy than small or moderate-sized infarcts
(Fig 1C). Regardless of the infarct locations, the DSC decreased as
the uncertainty index increased (Online Supplemental Data). For
both automatic and manual WMH segmentations, the uncertainty
index decreased as the WMH volume increased (Online
Supplemental Data). In the combined external validation data
sets, 86% of patients had an uncertainty index of ,0.35 (Fig
3B). In these subjects, the mean DSC (0.746) was similar to the
interrater reliability of manual segmentations (0.75). When
patients were stratified by WMH quartiles and DSCs, we again
observed an inverse relationship between the uncertainty index
and WMH volume (Fig 1E). Of note, within each WMH volume
stratum, there was an inverse relationship between the uncer-
tainty index and the DSC. However, when WMH volumes were
higher than �10mL, the uncertainty indices were lower than
�0.2, regardless of their DSC values. In contrast, when WMH
volumes were lower than �4mL, the uncertainty indexes were
higher than �0.3, regardless of their DSC values.

Baseline characteristics of the training, internal validation, and external validation data setsa

Training,
Validation, and
Internal Test
(n= 2408)

External
Validation 1
(n= 1105)

External
Validation 2
(n= 838)

External
Validation 3
(n= 2654)

External
Validation 4
(n= 428)

External
Validation 5
(n= 571)

External
Validation 6
(n= 417) P

Age (yr) 67.4 (13.0) 68.2 (12.8) 67.5 (13.3) 68.1 (12.5) 70.0 (11.7) 67.9 (13.1) 69.7 (12.7) ,.01
Sex, male 1419 (60.4) 568 (54.3) 491 (60.8) 1497 (57.7) 222 (52.7) 346 (63.0) 235 (58.6)
LKW to admission (hr) 12.0 (3.5–37.2) 13.1 (3.5–32.0) 13.9 (3.2–39.0) 6.8 (2.6–24.0) 11.4 (3.1–34.8) 13.5 (3.3–39.4) 17.7 (5.7–51) ,.001a

Prestroke mRS score.2 285 (12.1) 171 (16.4) 107 (13.2) 426 (16.4) 55 (13.1) 94 (17.1) 115 (28.7) ,.001
Admission NIHSS score 4 (2–8) 4 (2–7) 3 (1–8) 4 (2–9) 4 (2–10) 3 (2–8) 4 (2–8) .11a

Subtype ,.001
LAA 814 (35.4) 331 (32.3) 296 (38.0) 1030 (40.1) 179 (43.0) 197 (36.1) 162 (40.6)
SVO 469 (20.4) 222 (21.6) 216 (27.7) 221 (8.6) 52 (12.5) 123 (22.5) 98 (24.6)
CE 525 (22.8) 160 (15.6) 159 (20.4) 625 (24.3) 63 (15.1) 112 (20.5) 65 (16.3)
Undetermined 435 (18.9) 289 (28.2) 93 (11.9) 654 (25.4) 120 (28.9) 103 (18.9) 64 (16.0)
Other-determined 59 (2.6) 24 (2.3) 15 (1.9) 42 (1.6) 2 (0.5) 11 (2.0) 10 (2.5)

Previous stroke 483 (20.5) 250 (23.9) 188 (23.3) 392 (15.1) 112 (26.6) 115 (21.0) 111 (27.7) ,.001
Coronary artery disease 391 (16.6) 95 (9.1) 95 (11.8) 88 (3.4) 37 (8.8) 66 (12.0) 33 (8.2) ,.001
Hypertension 1594 (67.8) 726 (69.4) 559 (69.2) 1585 (61.1) 322 (76.5) 409 (74.5) 311 (77.6) ,.001
Diabetes 791 (33.7) 338 (32.3) 280 (34.7) 730 (28.1) 164 (39.0) 199 (36.3) 158 (39.4) ,.001
Hyperlipidemia 1084 (46.1) 193 (18.5) 324 (40.1) 362 (14.0) 133 (31.6) 268 (48.8) 195 (48.6) ,.001
Smoking, current or

quit#5 yr
950 (40.4) 391 (37.4) 330 (40.8) 989 (38.1) 162 (38.5) 259 (47.2) 166 (41.1) ,.001

Atrial fibrillation 496 (21.1) 180 (17.2) 158 (20.0) 621 (23.9) 86 (20.4) 114 (20.8) 66 (16.5) .003
Revascularization 404 (17.2) 147 (14.1) 82 (10.2) 587 (22.6) 73 (17.3) 114 (20.8) 45 (11.2) ,.001
Infarct volume (mL) 1.7 (0.4–9.8) 1.1 (0.3–6.6) 2.0 (0.4–12.2) 3.6 (0.6–17.9) 1.2 (0.3–8.7) 2.2 (0.5–15.4) 1.4 (0.5–9.5)
WMH volume (mL) 11.4 (5.4–24.7) 14.6 (6.6–30.0) 10.8 (4.2–25.1) 12.7 (6.9–24.3) 14.3 (7.0–28.7) 13.0 (6.7–25.5) 17.7 (8.9–40.0) ,.001a

Note:—CE indicates cardioembolism; LAA, large-artery atherosclerosis; LKW, last known well; mRS, modified Rankin Scale; SVO, small-vessel occlusion.
Data are presented as mean 6 SD, median (interquartile range), number (percentage).
a Kruskal-Wallis test was used.
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FIG 1. Segmentation performance of the SE-UNet, with stratification by infarct volume, white matter hyperintensity volume, and the uncer-
tainty index in external test data sets. A, Violin plot for the performance of WMH segmentation, with stratification by infarct volume (low,
,1.7mL, n¼ 2792; medium, 1.7–14mL, n¼ 1785; and large, .14mL, n¼ 1436). B, Violin plot for the segmentation performance, with stratifica-
tion by WMH volume (low ,,7.6mL, n¼ 1984; medium, 7.6–19.6mL, n¼ 1984; and large,.19.7mL, n¼ 2045). C, Segmentation performance
stratified by the infarct volume and the uncertainty index. D, Segmentation performance, stratified by the WMH volume and the uncertainty
index. Due to the association between the volume of WMHs and the uncertainty index, none of the patients in the large-volume group had
an uncertainty index exceeding 0.8. E, The mean and 95% CI of the uncertainty index after stratification of DSCs and WMH volume (in quar-
tiles). In the violin plots, lines and dotted lines indicate median and interquartile range, respectively. In the line graphs, dots and error bars
indicate mean (SD), respectively.
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Correlation between Volumes of WMH Segmented
Automatically versus Manually
In the combined data set for external testing (6013 patients’ MR
images from 6 stroke centers), the median WMH volume esti-
mated by the SE-UNet segmentation algorithm was 12.39mL
(interquartile range, 6.02–25.38 mL). There was an excellent
correlation between volumes of WMH segmented automatically
using the SE-UNet versus manual segmentation by experienced
researchers (Fig 4), with the concordance correlation coefficient

and the Cb being 0.931 (95% CI, 0.928–0.934) and 0.990, respec-
tively. When each external data set was assessed separately, the
concordance correlation coefficient and Cb ranged from 0.841
to 0.956 and 0.973 to 0.994, respectively (Online Supplemental
Data). In the combined external data set, 6 outlier cases that
appeared to be far off the diagonal line were identified (Online
Supplemental Data). In every case, we found that manual seg-
mentation had erroneously designated acute or chronic infarcts
as WMHs.

FIG 3. Relationship between the uncertainty index and the DSC. A, Density plot between the uncertainty index and the DSC. As expected, there
is a negative correlation between the 2 values. B, Mean DSC, distribution of subjects, and the uncertainty index. The blue line represents the cu-
mulative percentile of patients, while the green line indicates the mean DSC of cumulative patients. The blue dotted line represents the cumula-
tive percentage of patients when the uncertainty index reaches 0.35 from 0 (red dotted line). The green dotted line shows interhuman DSC. At
an uncertainty index of 0.35, accumulated patients comprise approximately 86% of the total population, with a mean DSC of 0.75.

FIG 2. Representative cases of automatic white matter hyperintensity segmentation and their uncertainty indices. Upper row: raw images.
Middle row: red and blue areas, respectively, show areas of agreement and disagreement between human segmentation and deep learning algo-
rithm-based segmentation. Lower row: adjudicated final results, with uncertainties resolved.
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DISCUSSION
In the present study using multicenter data sets (MR images with
voxelwise lesion [ground truth] annotation and prospectively
collected clinical data) from a total of 8421 patients with ische-
mic stroke, we developed and validated deep learning algo-
rithms for automatic WMH segmentation. This, to the best of
our knowledge, is the largest-ever data set used for stroke
research of this nature (Fig 5). The SE-UNet algorithm had a
very high level of segmentation accuracy, with the concordance
correlation coefficient and the Cb being, respectively, 0.919 and
0.987, compared with the ground-truth WMH volumes. As pre-
viously reported,7 however, even among the highly experienced
raters, the level of voxelwise agreement was moderate (DSC-
based interrater reliability of �0.77). We found a close correla-
tion between a high uncertainty index and a low DSC, suggest-
ing that researchers can use the index to identify those cases that
require human inspection following artificial intelligence–based
automatic segmentation of WMH. The sample results and dem-
onstration are available at the Web site https://stroke.medihub.
ai/login/JBS_WMH_sample (Online Supplemental Data).

Because manual segmentation of WMH is labor-intensive and
time-consuming, visual rating scales have been widely used in
WMH research using large or multicenter data sets. However,

FIG 4. Scatterplot showing a strong correlation between the vol-
umes of WMHs segmented automatically by SE-UNet and manually
in external validation. Gray dots indicate each subject. The red line indi-
cates a 45° line of identity. Outlier subjects (blue dots) are reviewed in
the Online Supplemental Data. The given equation is y¼ 2.16931 0.8311x,
where y represents the automatically segmented WMH volume and x
represents the manually segmented WMH volume. After eliminating 6
outlier cases from the scatterplot, the slope showed a modest increase,
resulting in the equation y¼ 2.06711 0.8376 x. Coef indicates coefficient.

FIG 5. Comparison of previous studies and the current study on automatedWMH segmentation using deep learning algorithms, along with rep-
resentative cases demonstrating the performance of our algorithm. NA indicates not applicable.
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visual rating systems showed limited correlation with quantitative
assessments of WMH.35 In addition, when examining longitudi-
nal changes in white matter, volumetric measures of WMH pro-
vided a more reliable, sensitive, and objective substitute than
visual rating scales.36 Moreover, according to a recent study,
expert agreement in manually segmenting WMH was low, with
DSCs ranging from 0.56 to 0.62.11 In our study, 5 experienced
research assistants who have been segmenting WMH for.5 years
under careful supervision (including regular audits and consensus
discussions) of a vascular neurologist accomplished a DSC of
�0.77. Taken together, these findings raise concerns about the ac-
curacy and consistency of WMH quantifications in large multi-
center investigations involving multiple raters, emphasizing the
need for a verified automatic WMH segmentation method to
serve as a labor saving-yet-accurate reference method. In the pres-
ent study, multicenter validations demonstrated consistently high
performance of the artificial intelligence algorithm, achieving a
high DSC across various MRI vendors and parameters.

Because deep learning algorithms can have overfitting,37

extensive external validation is necessary before they can be used
in clinical practice. Unlike previous deep learning studies that
have demonstrated similar18 or superior16 performance of WMH
segmentation, our study rigorously validated our algorithms on 6
external data sets with various MRI vendors, acquisition proto-
cols, and clinical features. This extensive validation underscores
the robustness of our approach. As shown in our study, even
among the highly experienced raters, the level of voxelwise agree-
ment was moderate (DSC-based interrater reliability of �0.77).
Moreover, the performance of deep learning models reached a
plateau at about 2000 FLAIR MRIs. Thus, even with a larger data
set for supervised learning, it might be difficult to outperform
experts in rigorous internal and external testing.

Prior studies on automatic WMH segmentation using
deep learning did not include patients with acute ischemic
stroke.12,15,16,18,19 These studies are difficult to apply to research
in patients with stroke because it is challenging to distinguish
between acute infarcts and WMH on FLAIR images. We demon-
strated that our deep learning algorithm reliably differentiates
WMHs from acute infarcts and quantifies WMH volume with
excellent agreement with manual segmentation (Fig 5), thereby
facilitating WMH research in patients with stroke with a large
sample size. Future studies could validate our deep learning
algorithms in outpatients with cognitive decline as well, expand-
ing their clinical relevance. The general methodology we estab-
lished in patients with stroke also should be applicable to many
other populations.

Our study shows that manually or via deep learning approaches,
segmenting WMHs may have an inherent element of ambiguity
when the extent of WMH is small in the periventricular area
and there are spatial overlaps between infarcts and WMHs.
The uncertainty index that represents a patient-level ambigu-
ity in voxel classification for WMH segmentation was nega-
tively correlated with total WMH volume and DSC. Thus, the
uncertainty index could be a useful stratification/triage tool
to identify cases that require human inspection in research or
clinical practice using WMH segmentation, enabling investigators
to evaluate their own models and compare different study results.

Deep learning models typically perform worse on data that
were not used for training.38 In our study however, both the
UNet and SE-UNet demonstrated higher DSCs in the external
test data sets than in the internal test data set. This finding may
be attributed to higher WMH volumes in the external validation
data sets (ranging from 10.8 to 17.7mL) compared with the inter-
nal data set (median 11.4mL). As shown in Fig 1B, DSC values
were higher whenWMH volumes were higher.

Of note, while acknowledging the potential benefits of 3D
models, we deliberately opted to use 2D UNets for several rea-
sons: First, in typical clinical settings for screening patients with
stroke, MR images mostly have high in-plane resolution (eg, 1 -
� 1 mm) but a relatively large slice thickness (3–7 mm), aligning
well with the capabilities of 2D UNets. Preliminary investigations
with 3D UNet39 and nnUNet, a semantic segmentation method
that automatically adapts to a given dataset,40 yielded suboptimal
segmentation performance compared with 2D methods (Online
Supplemental Data). Furthermore, computational constraints,
particularly with our large data sets, limited the feasibility of
deploying and adjusting 3D approaches without sacrificing effi-
ciency. Using 2D UNets, we achieved a balance between com-
putational efficiency and model performance, ensuring that our
experiments could be conducted within reasonable time and
resource constraints.

Our study has limitations. First, T1-weighted images were unavail-
able because MRI was performed in the setting of acute stroke. The
performance of deep learning algorithms was reported to improve
when trained with both FLAIR and T1-weighted images, compared
with the exclusive use of FLAIR images.12 Second, given that most
study participants were of Asian descent, the generalizability of the
findings to other ethnic populations might be somewhat restricted.
While a recent study found that racial differences in WMH burden
are largely influenced by underlying vascular risk factors,41 further
work with multinational cohorts is needed. Third, incorporating
FLAIR and DWI into the algorithmmay improve the differentiation
of WMH from acute infarct. However, this step may limit the utility
of the algorithm due to the requirements of both types of images.
Finally, our algorithm was trained using FLAIR images acquired
.10years ago (from 2011 to 2013). However, when the algorithm
was validated using a recent MRI data set from 30 patients with
acute ischemic stroke (Online Supplemental Data), the validation
showed a comparable level of DSC: 0.674 (95% CI, 0.619–0.729).

CONCLUSIONS
We developed and validated deep learning algorithms to segment
WMH in patients with acute cerebral infarction using the largest-
ever MRI data sets. In addition, we showed how the uncertainty
index could assist researchers and physicians in identifying chal-
lenging cases that may necessitate human review after automatic
WMH segmentation.
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