Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Review ArticleReview Articles
Open Access

The Prognostic Utility of MRI in Clinically Isolated Syndrome: A Literature Review

C. Odenthal and A. Coulthard
American Journal of Neuroradiology March 2015, 36 (3) 425-431; DOI: https://doi.org/10.3174/ajnr.A3954
C. Odenthal
aFrom the School of Medicine (C.O.), University of Queensland, Brisbane, Queensland, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Coulthard
bDepartment of Medical Imaging (A.C.), Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Miller DH,
    2. Chard DT,
    3. Ciccarelli O
    . Clinically isolated syndromes. Lancet Neurol 2012;11:157–69
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Miller DH,
    2. Weinshenker BG,
    3. Filippi M, et al
    . Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler 2008;14:1157–74
    Abstract/FREE Full Text
  3. 3.↵
    1. Tozer DJ,
    2. Marongiu G,
    3. Swanton JK, et al
    . Texture analysis of magnetization transfer maps from patients with clinically isolated syndrome and multiple sclerosis. J Magn Reson Imaging 2009;30:506–13
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Summers M,
    2. Swanton J,
    3. Fernando K, et al
    . Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. J Neurol Neurosurg Psychiatry 2008;79:955–58
    Abstract/FREE Full Text
  5. 5.↵
    1. Patrucco L,
    2. Rojas JI,
    3. Miguez JS, et al
    . Application of the McDonald 2010 criteria for the diagnosis of multiple sclerosis in an Argentinean cohort of patients with clinically isolated syndromes. Mult Scler 2013;19:1297–301
    Abstract/FREE Full Text
  6. 6.↵
    1. Brex PA,
    2. Ciccarelli O,
    3. O'Riordan JI, et al
    . A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 2002;346:158–64
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Fisniku LK,
    2. Brex PA,
    3. Altmann DR, et al
    . Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008;131:808–17
    Abstract/FREE Full Text
  8. 8.↵
    1. Brex PA,
    2. O'Riordan JI,
    3. Miszkiel KA, et al
    . Multisequence MRI in clinically isolated syndromes and the early development of MS. Neurology 1999;53:1184–90
    CrossRef
  9. 9.↵
    1. Tintoré M,
    2. Rovira A,
    3. Río J, et al
    . Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology 2006;67:968–72
    CrossRef
  10. 10.↵
    1. Alroughani R,
    2. Al Hashel J,
    3. Lamdhade S, et al
    . Predictors of conversion to multiple sclerosis in patients with clinical isolated syndrome using the 2010 revised McDonald criteria. ISRN Neurol 2012;2012:792192
    PubMed
  11. 11.↵
    1. Dalton CM,
    2. Brex PA,
    3. Jenkins R, et al
    . Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis. J Neurol Neurosurg Psychiatry 2002;73:141–47
    Abstract/FREE Full Text
  12. 12.↵
    1. Moraal B,
    2. Pohl C,
    3. Uitdehaag BM, et al
    . Magnetic resonance imaging predictors of conversion to multiple sclerosis in the BENEFIT study. Arch Neurol 2009;66:1345–52
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Brex PA,
    2. Miszkiel KA,
    3. O'Riordan JI, et al
    . Assessing the risk of early multiple sclerosis in patients with clinically isolated syndromes: the role of a follow up MRI. J Neurol Neurosurg Psychiatry 2001;70:390–93
    Abstract/FREE Full Text
  14. 14.↵
    1. Pestalozza IF,
    2. Pozzilli C,
    3. Di Legge S, et al
    . Monthly brain magnetic resonance imaging scans in patients with clinically isolated syndrome. Mult Scler 2005;11:390–94
    Abstract/FREE Full Text
  15. 15.↵
    1. Dalton CM,
    2. Brex PA,
    3. Miszkiel KA, et al
    . Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis. Ann Neurol 2002;52:47–53
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Zivadinov R,
    2. Havrdová E,
    3. Bergsland N, et al
    . Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology 2013;268:831–41
    CrossRefPubMed
  17. 17.↵
    1. Brex PA,
    2. Leary SM,
    3. Plant GT, et al
    . Magnetization transfer imaging in patients with clinically isolated syndromes suggestive of multiple sclerosis. AJNR Am J Neuroradiol 2001;22:947–51
    Abstract/FREE Full Text
  18. 18.↵
    1. Zhang WY,
    2. Hou YL
    . Prognostic value of magnetic resonance imaging in patients with clinically isolated syndrome conversion to multiple sclerosis: a meta-analysis. Neurol India 2013;61:231–38
    CrossRefPubMed
  19. 19.↵
    Predictors of short-term disease activity following a first clinical demyelinating event: analysis of the CHAMPS placebo group. Mult Scler 2002;8:405–09
    Abstract/FREE Full Text
  20. 20.↵
    CHAMPS Study Group. MRI predictors of early conversion to clinically definite MS in the CHAMPS placebo group. Neurology 2002;59:998–1005
    CrossRef
  21. 21.↵
    Baseline MRI characteristics of patients at high risk for multiple sclerosis: results from the CHAMPS trial. Controlled high-risk subjects Avonex multiple sclerosis prevention study. Mult Scler 2002;8:330–38
    Abstract/FREE Full Text
  22. 22.↵
    1. Kalincik T,
    2. Vaneckova M,
    3. Tyblova M, et al
    . Volumetric MRI markers and predictors of disease activity in early multiple sclerosis: a longitudinal cohort study. PloS One 2012;7:e50101
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Polman C,
    2. Kappos L,
    3. Freedman MS, et al
    . Subgroups of the BENEFIT study: risk of developing MS and treatment effect of interferon beta-1b. J Neurol 2008;255:480–87
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Rovira A,
    2. Swanton J,
    3. Tintore M, et al
    . A single, early magnetic resonance imaging study in the diagnosis of multiple sclerosis. Arch Neurol 2009;66:587–92
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Nielsen JM,
    2. Pohl C,
    3. Polman CH, et al
    . MRI characteristics are predictive for CDMS in monofocal, but not in multifocal patients with a clinically isolated syndrome. BMC Neurol 2009;9:19
    CrossRefPubMed
  26. 26.↵
    1. Kurtzke JF
    . Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52
    CrossRefPubMed
  27. 27.↵
    1. Whitaker JN,
    2. McFarland HF,
    3. Rudge P, et al
    . Outcomes assessment in multiple sclerosis clinical trials: a critical analysis. Mult Scler 1995;1:37–47
    Abstract/FREE Full Text
  28. 28.↵
    1. Rudick R,
    2. Antel J,
    3. Confavreux C, et al
    . Clinical outcomes assessment in multiple sclerosis. Ann Neurol 1996;40:469–79
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Di Filippo M,
    2. Anderson VM,
    3. Altmann DR, et al
    . Brain atrophy and lesion load measures over 1 year relate to clinical status after 6 years in patients with clinically isolated syndromes. J Neurol Neurosurg Psychiatry 2010;81:204–08
    Abstract/FREE Full Text
  30. 30.↵
    1. Kincses ZT,
    2. Ropele S,
    3. Jenkinson M, et al
    . Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis. Mult Scler 2011;17:681–89
    Abstract/FREE Full Text
  31. 31.↵
    1. Ceccarelli A,
    2. Rocca MA,
    3. Pagani E, et al
    . A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. NeuroImage 2008;42:315–22
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Brex PA,
    2. Gomez-Anson B,
    3. Parker GJ, et al
    . Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Sci 1999;166:16–22
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Jafari N,
    2. Kreft KL,
    3. Flach HZ, et al
    . Callosal lesion predicts future attacks after clinically isolated syndrome. Neurology 2009;73:1837–41
    CrossRef
  34. 34.↵
    1. Tintore M,
    2. Rovira A,
    3. Arrambide G, et al
    . Brainstem lesions in clinically isolated syndromes. Neurology 2010;75:1933–38
    CrossRef
  35. 35.↵
    1. Minneboo A,
    2. Barkhof F,
    3. Polman CH, et al
    . Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol 2004;61:217–21
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Frischer JM,
    2. Bramow S,
    3. Dal-Bianco A, et al
    . The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009;132:1175–89
    Abstract/FREE Full Text
  37. 37.↵
    1. Ashburner J,
    2. Friston KJ
    . Unified segmentation. NeuroImage 2005;26:839–51
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Dale AM,
    2. Fischl B,
    3. Sereno MI
    . Cortical surface-based analysis—I. Segmentation and surface reconstruction. NeuroImage 1999;9:179–94
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Dale AM,
    2. Sereno MI
    . Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction–a linear approach. J Cogn Neurosci 1993;5:162–76
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004;23 Suppl 1:S208–19
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Smith SM,
    2. Zhang Y,
    3. Jenkinson M, et al
    . Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage 2002;17:479–89
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Hagman S,
    2. Raunio M,
    3. Rossi M, et al
    . Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: prospective clinical and MRI follow-up study. J Neuroimmunol 2011;234:141–47
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Teunissen CE,
    2. Iacobaeus E,
    3. Khademi M, et al
    . Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 2009;72:1322–29
    CrossRef
  44. 44.↵
    1. Roosendaal SD,
    2. Bendfeldt K,
    3. Vrenken H, et al
    . Grey matter volume in a large cohort of MS patients: relation to MRI parameters and disability. Mult Scler 2011;17:1098–106
    Abstract/FREE Full Text
  45. 45.↵
    1. Bergsland N,
    2. Horakova D,
    3. Dwyer MG, et al
    . Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 2012;33:1573–78
    Abstract/FREE Full Text
  46. 46.↵
    1. Rocca MA,
    2. Agosta F,
    3. Sormani MP, et al
    . A three-year, multi-parametric MRI study in patients at presentation with CIS. J Neurol 2008;255:683–91
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Hagemeier J,
    2. Weinstock-Guttman B,
    3. Bergsland N, et al
    . Iron deposition on SWI-filtered phase in the subcortical deep gray matter of patients with clinically isolated syndrome may precede structure-specific atrophy. AJNR Am J Neuroradiol 2012;33:1596–601
    Abstract/FREE Full Text
  48. 48.↵
    1. Tavazzi E,
    2. Dwyer MG,
    3. Weinstock-Guttman B, et al
    . Quantitative diffusion weighted imaging measures in patients with multiple sclerosis. NeuroImage 2007;36:746–54
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Iannucci G,
    2. Tortorella C,
    3. Rovaris M, et al
    . Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR Am J Neuroradiol 2000;21:1034–38
    Abstract/FREE Full Text
  50. 50.↵
    1. Calabrese M,
    2. Rinaldi F,
    3. Mattisi I, et al
    . The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology 2011;77:257–63
    CrossRef
  51. 51.↵
    1. Paolillo A,
    2. Piattella MC,
    3. Pantano P, et al
    . The relationship between inflammation and atrophy in clinically isolated syndromes suggestive of multiple sclerosis: a monthly MRI study after triple-dose gadolinium-DTPA. J Neurol 2004;251:432–39
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Henry RG,
    2. Shieh M,
    3. Okuda DT, et al
    . Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry 2008;79:1236–44
    Abstract/FREE Full Text
  53. 53.↵
    1. Traboulsee A,
    2. Dehmeshki J,
    3. Brex PA, et al
    . Normal-appearing brain tissue MTR histograms in clinically isolated syndromes suggestive of MS. Neurology 2002;59:126–28
    CrossRef
  54. 54.↵
    1. Rudick RA,
    2. Lee JC,
    3. Nakamura K, et al
    . Gray matter atrophy correlates with MS disability progression measured with MSFC but not EDSS. J Neurol Sci 2009;282:106–11
    CrossRefPubMed
  55. 55.↵
    1. Sbardella E,
    2. Tomassini V,
    3. Stromillo ML, et al
    . Pronounced focal and diffuse brain damage predicts short-term disease evolution in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 2011;17:1432–40
    Abstract/FREE Full Text
  56. 56.↵
    1. Raz E,
    2. Cercignani M,
    3. Sbardella E, et al
    . Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and gray matter. Radiology 2010;254:227–34
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Ceccarelli A,
    2. Rocca MA,
    3. Perego E, et al
    . Deep grey matter T2 hypo-intensity in patients with paediatric multiple sclerosis. Mult Scler 2011;17:702–07
    Abstract/FREE Full Text
  58. 58.↵
    1. Derakhshan M,
    2. Caramanos Z,
    3. Giacomini PS, et al
    . Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. NeuroImage 2010;52:1261–67
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Battaglini M,
    2. Jenkinson M,
    3. De Stefano N
    . Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 2012;33:2062–71
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Rovaris M,
    2. Judica E,
    3. Ceccarelli A, et al
    . A 3-year diffusion tensor MRI study of grey matter damage progression during the earliest clinical stage of MS. J Neurol 2008;255:1209–14
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. De Stefano N,
    2. Giorgio A,
    3. Battaglini M, et al
    . Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 2010;74:1868–76
    CrossRef
  62. 62.↵
    1. Audoin B,
    2. Ibarrola D,
    3. Malikova I, et al
    . Onset and underpinnings of white matter atrophy at the very early stage of multiple sclerosis–a 2-year longitudinal MRI/MRSI study of corpus callosum. Mult Scler 2007;13:41–51
    Abstract/FREE Full Text
  63. 63.↵
    1. Beaulieu C,
    2. Allen PS
    . Determinants of anisotropic water diffusion in nerves. Magn Reson Med 1994;31:394–400
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Yu CS,
    2. Lin FC,
    3. Liu Y, et al
    . Histogram analysis of diffusion measures in clinically isolated syndromes and relapsing-remitting multiple sclerosis. Eur J Radiol 2008;68:328–34
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Caramia F,
    2. Pantano P,
    3. Di Legge S, et al
    . A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Reson Imaging 2002;20:383–88
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Pagani E,
    2. Filippi M,
    3. Rocca MA, et al
    . A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage 2005;26:258–65
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. Preziosa P,
    2. Rocca MA,
    3. Mesaros S, et al
    . Intrinsic damage to the major white matter tracts in patients with different clinical phenotypes of multiple sclerosis: a voxelwise diffusion-tensor MR study. Radiology 2011;260:541–50
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Johansen-Berg H, et al
    . Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 2006;31:1487–505
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Raz E,
    2. Cercignani M,
    3. Sbardella E, et al
    . Gray- and white-matter changes 1 year after first clinical episode of multiple sclerosis: MR imaging. Radiology 2010;257:448–54
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Pike GB
    . Pulsed magnetization transfer contrast in gradient echo imaging: a two-pool analytic description of signal response. Magn Reson Med 1996;36:95–103
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Fernando KT,
    2. Tozer DJ,
    3. Miszkiel KA, et al
    . Magnetization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis. Brain 2005;128:2911–25
    Abstract/FREE Full Text
  72. 72.↵
    1. Khalil M,
    2. Enzinger C,
    3. Langkammer C, et al
    . Cognitive impairment in relation to MRI metrics in patients with clinically isolated syndrome. Mult Scler 2011;17:173–80
    Abstract/FREE Full Text
  73. 73.↵
    1. Gallo A,
    2. Rovaris M,
    3. Benedetti B, et al
    . A brain magnetization transfer MRI study with a clinical follow up of about four years in patients with clinically isolated syndromes suggestive of multiple sclerosis. J Neurol 2007;254:78–83
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Wattjes MP,
    2. Harzheim M,
    3. Lutterbey GG, et al
    . Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. AJNR Am J Neuroradiol 2007;28:1517–22
    Abstract/FREE Full Text
  75. 75.↵
    1. Fernando KT,
    2. McLean MA,
    3. Chard DT, et al
    . Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 2004;127:1361–69
    Abstract/FREE Full Text
  76. 76.↵
    1. Wattjes MP,
    2. Harzheim M,
    3. Lutterbey GG, et al
    . Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology 2008;50:123–29
    CrossRefPubMedWeb of Science
  77. 77.↵
    1. Pantano P,
    2. Iannetti GD,
    3. Caramia F, et al
    . Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 2002;125:1607–15
    Abstract/FREE Full Text
  78. 78.↵
    1. Rocca MA,
    2. Colombo B,
    3. Falini A, et al
    . Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 2005;4:618–26
    CrossRefPubMedWeb of Science
  79. 79.↵
    1. Filippi M,
    2. Rocca MA,
    3. Mezzapesa DM, et al
    . Simple and complex movement-associated functional MRI changes in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Hum Brain Mapp 2004;21:108–17
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Rocca MA,
    2. Mezzapesa DM,
    3. Ghezzi A, et al
    . A widespread pattern of cortical activations in patients at presentation with clinically isolated symptoms is associated with evolution to definite multiple sclerosis. AJNR Am J Neuroradiol 2005;26:1136–39
    Abstract/FREE Full Text
  81. 81.↵
    1. Audoin B,
    2. Reuter F,
    3. Duong MV, et al
    . Efficiency of cognitive control recruitment in the very early stage of multiple sclerosis: a one-year fMRI follow-up study. Mult Scler 2008;14:786–92
    Abstract/FREE Full Text
  82. 82.↵
    1. Rocca MA,
    2. Absinta M,
    3. Moiola L, et al
    . Functional and structural connectivity of the motor network in pediatric and adult-onset relapsing-remitting multiple sclerosis. Radiology 2010;254:541–50
    CrossRefPubMedWeb of Science
  83. 83.↵
    1. Liu Y,
    2. Duan Y,
    3. Liang P, et al
    . Baseline brain activity changes in patients with clinically isolated syndrome revealed by resting-state functional MRI. Acta Radiol 2012;53:1073–78
    Abstract/FREE Full Text
  84. 84.↵
    1. Liu Y,
    2. Liang P,
    3. Duan Y, et al
    . Brain plasticity in relapsing-remitting multiple sclerosis: evidence from resting-state fMRI. J Neurol Sci 2011;304:127–31
    CrossRefPubMed
  85. 85.↵
    1. Varga AW,
    2. Johnson G,
    3. Babb JS, et al
    . White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J Neurol Sci 2009;282:28–33
    CrossRefPubMed
  86. 86.↵
    1. Ge Y,
    2. Jensen JH,
    3. Lu H, et al
    . Quantitative assessment of iron accumulation in the deep gray matter of multiple sclerosis by magnetic field correlation imaging. AJNR Am J Neuroradiol 2007;28:1639–44
    Abstract/FREE Full Text
  87. 87.↵
    1. Ceccarelli A,
    2. Rocca MA,
    3. Neema M, et al
    . Deep gray matter T2 hypointensity is present in patients with clinically isolated syndromes suggestive of multiple sclerosis. Mult Scler 2010;16:39–44
    Abstract/FREE Full Text
  88. 88.↵
    1. Khalil M,
    2. Enzinger C,
    3. Langkammer C, et al
    . Quantitative assessment of brain iron by R(2)* relaxometry in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Mult Scler 2009;15:1048–54
    Abstract/FREE Full Text
  89. 89.↵
    1. Khalil M,
    2. Langkammer C,
    3. Ropele S, et al
    . Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study. Neurology 2011;77:1691–97
    CrossRef
  90. 90.↵
    1. Langkammer C,
    2. Liu T,
    3. Khalil M, et al
    . Quantitative susceptibility mapping in multiple sclerosis. Radiology 2013;267:551–59
    CrossRefPubMedWeb of Science
  91. 91.↵
    1. Quinn MP,
    2. Gati JS,
    3. Klassen ML, et al
    . Increased deep grey matter iron is present in clinically isolated syndromes. Mult Scler 2014;3:194–202
  92. 92.↵
    1. Meca-Lallana JE,
    2. Hernandez-Clares R,
    3. Leon-Hernandez A, et al
    . Plasma exchange for steroid-refractory relapses in multiple sclerosis: an observational, MRI pilot study. Clin Ther 2013;35:474–85
    CrossRefPubMed
  93. 93.↵
    1. Kinkel RP,
    2. Dontchev M,
    3. Kollman C, et al
    . Association between immediate initiation of intramuscular interferon beta-1a at the time of a clinically isolated syndrome and long-term outcomes: a 10-year follow-up of the controlled high-risk Avonex multiple sclerosis prevention study in ongoing neurological surveillance. Arch Neurol 2012;69:183–90
    CrossRefPubMedWeb of Science
  94. 94.↵
    1. Kappos L,
    2. Polman CH,
    3. Freedman MS, et al
    . Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 2006;67:1242–49
    CrossRef
  95. 95.↵
    1. Barkhof F,
    2. Polman CH,
    3. Radue EW, et al
    . Magnetic resonance imaging effects of interferon beta-1b in the BENEFIT study: integrated 2-year results. Arch Neurol 2007;64:1292–98
    CrossRefPubMedWeb of Science
  96. 96.↵
    1. Kinkel RP,
    2. Simon JH,
    3. Baron B
    . Bimonthly cranial MRI activity following an isolated monosymptomatic demyelinating syndrome: potential outcome measures for future multiple sclerosis ‘prevention’ trials. Mult Scler 1999;5:307–12
    Abstract/FREE Full Text
  97. 97.↵
    1. Deoni SC,
    2. Rutt BK,
    3. Jones DK
    . Investigating exchange and multicomponent relaxation in fully balanced steady-state free precession imaging. J Magn Reson Imaging 2008;27:1421–29
    CrossRefPubMed
  98. 98.↵
    1. Kitzler HH,
    2. Su J,
    3. Zeineh M, et al
    . Deficient MWF mapping in multiple sclerosis using 3D whole-brain multi-component relaxation MRI. NeuroImage 2012;59:2670–77
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (3)
American Journal of Neuroradiology
Vol. 36, Issue 3
1 Mar 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Prognostic Utility of MRI in Clinically Isolated Syndrome: A Literature Review
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C. Odenthal, A. Coulthard
The Prognostic Utility of MRI in Clinically Isolated Syndrome: A Literature Review
American Journal of Neuroradiology Mar 2015, 36 (3) 425-431; DOI: 10.3174/ajnr.A3954

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
The Prognostic Utility of MRI in Clinically Isolated Syndrome: A Literature Review
C. Odenthal, A. Coulthard
American Journal of Neuroradiology Mar 2015, 36 (3) 425-431; DOI: 10.3174/ajnr.A3954
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Conclusions
    • REFERENCES
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Detection of Leukocortical Lesions in Multiple Sclerosis and Their Association with Physical and Cognitive Impairment: A Comparison of Conventional and Synthetic Phase-Sensitive Inversion Recovery MRI
  • Crossref (14)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • The tension between early diagnosis and misdiagnosis of multiple sclerosis
    Andrew J. Solomon, John R. Corboy
    Nature Reviews Neurology 2017 13 9
  • Early High Efficacy Treatment in Multiple Sclerosis Is the Best Predictor of Future Disease Activity Over 1 and 2 Years in a Norwegian Population-Based Registry
    Cecilia Smith Simonsen, Heidi Øyen Flemmen, Line Broch, Cathrine Brunborg, Pål Berg-Hansen, Stine Marit Moen, Elisabeth Gulowsen Celius
    Frontiers in Neurology 2021 12
  • Deep learning of brain lesion patterns and user-defined clinical and MRI features for predicting conversion to multiple sclerosis from clinically isolated syndrome
    Youngjin Yoo, Lisa Y. W. Tang, David K. B. Li, Luanne Metz, Shannon Kolind, Anthony L. Traboulsee, Roger C. Tam
    Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2019 7 3
  • In vivo measurement of a new source of contrast, the dipolar relaxation time, T1D, using a modified inhomogeneous magnetization transfer (ihMT) sequence
    Gopal Varma, Olivier M. Girard, Valentin H. Prevost, Aaron K. Grant, Guillaume Duhamel, David C. Alsop
    Magnetic Resonance in Medicine 2017 78 4
  • 11C-Acetate PET Imaging in Patients with Multiple Sclerosis
    Kazushiro Takata, Hiroki Kato, Eku Shimosegawa, Tatsusada Okuno, Toru Koda, Tomoyuki Sugimoto, Hideki Mochizuki, Jun Hatazawa, Yuji Nakatsuji, Akio Suzumura
    PLoS ONE 2014 9 11
  • Deep Learning and Data Labeling for Medical Applications
    Youngjin Yoo, Lisa W. Tang, Tom Brosch, David K. B. Li, Luanne Metz, Anthony Traboulsee, Roger Tam
    2016 10008
  • Detection of Leukocortical Lesions in Multiple Sclerosis and Their Association with Physical and Cognitive Impairment: A Comparison of Conventional and Synthetic Phase-Sensitive Inversion Recovery MRI
    Y. Forslin, Å. Bergendal, F. Hashim, J. Martola, S. Shams, M.K. Wiberg, S. Fredrikson, T. Granberg
    American Journal of Neuroradiology 2018 39 11
  • Cognitive performance, fatigue and event-related potentials in patients with clinically isolated syndrome
    Anna Pokryszko-Dragan, Edyta Dziadkowiak, Mieszko Zagrajek, Krzysztof Slotwinski, Ewa Gruszka, Malgorzata Bilinska, Ryszard Podemski
    Clinical Neurology and Neurosurgery 2016 149
  • Short-term MRI measurements as predictors of EDSS progression in relapsing-remitting multiple sclerosis: grey matter atrophy but not lesions are predictive in a real-life setting
    Johanna von Gumberz, Mina Mahmoudi, Kim Young, Sven Schippling, Roland Martin, Christoph Heesen, Susanne Siemonsen, Jan-Patrick Stellmann
    PeerJ 2016 4
  • Magnetic resonance imaging as a prognostic disability marker in clinically isolated syndrome: A systematic review
    Anne C. Rahn, Sascha Köpke, Jan-Patrick Stellmann, Insa Schiffmann, Carsten Lukas, Declan Chard, Christoph Heesen
    Acta Neurologica Scandinavica 2019 139 1

More in this TOC Section

  • Ultra-High-Field MR Neuroimaging
  • Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature
  • Armies of Pestilence: CNS Infections as Potential Weapons of Mass Destruction
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire