Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleBRAIN

Quantitative Characterization of the Corticospinal Tract at 3T

D.S. Reich, S.A. Smith, C.K. Jones, K.M. Zackowski, P.C. van Zijl, P.A. Calabresi and S. Mori
American Journal of Neuroradiology November 2006, 27 (10) 2168-2178;
D.S. Reich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.A. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.K. Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.M. Zackowski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.C. van Zijl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.A. Calabresi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Mori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: White matter tract–specific imaging will probably become a major component of clinical neuroradiology. Fiber tracking with diffusion tensor imaging (DTI) is widely used, but variability is substantial. This article reports the ranges of MR imaging appearance and right-left asymmetry of healthy corticospinal tracts (CST) reconstructed with DTI.

METHODS: For 20 healthy volunteers, whole-brain DTI data were coregistered with maps of absolute T1 and T2 relaxation times and magnetization transfer ratio (MTR), all acquired at 3T. For each individual, the 2 reconstructed CSTs and their asymmetry were analyzed with respect to the number of fibers reconstructed; tract volume; and individual MR imaging parameters restricted to the tracts. Interscan variability was estimated by repeat imaging of 8 individuals.

RESULTS: Reconstructed fiber number and tract volume are highly variable, rendering them insensitive to abnormalities in disease. Individual tract-restricted MR imaging parameters are more constrained, and their population averages and normal ranges are reported. The average population asymmetry is generally zero; therefore, normal ranges for an index of asymmetry are reported. By way of example, CST-restricted MR imaging parameters and their asymmetries are shown to be abnormal in an individual with multiple sclerosis who had a lesion affecting the CST.

CONCLUSIONS: The results constitute a normative dataset for the following imaging parameters of the CST: T1, T2, MTR, fractional anisotropy, mean diffusivity, transverse diffusivity, and the 3 diffusion tensor eigenvalues. These data can be used to identify, characterize, and establish the significance of changes in diseases that affect the CST.

  • Copyright © American Society of Neuroradiology
View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 27 (10)
American Journal of Neuroradiology
Vol. 27, Issue 10
November 2006
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Characterization of the Corticospinal Tract at 3T
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
D.S. Reich, S.A. Smith, C.K. Jones, K.M. Zackowski, P.C. van Zijl, P.A. Calabresi, S. Mori
Quantitative Characterization of the Corticospinal Tract at 3T
American Journal of Neuroradiology Nov 2006, 27 (10) 2168-2178;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Quantitative Characterization of the Corticospinal Tract at 3T
D.S. Reich, S.A. Smith, C.K. Jones, K.M. Zackowski, P.C. van Zijl, P.A. Calabresi, S. Mori
American Journal of Neuroradiology Nov 2006, 27 (10) 2168-2178;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Coherent waves of myelin plasticity during motor-skill learning
  • Test-Retest and Interreader Reproducibility of Semiautomated Atlas-Based Analysis of Diffusion Tensor Imaging Data in Acute Cervical Spine Trauma in Adult Patients
  • Loss of corticospinal tract integrity in early MS disease stages
  • Different Characteristics of the Corticospinal Tract According to the Cerebral Origin: DTI Study
  • Spinal cord quantitative MRI discriminates between disability levels in multiple sclerosis
  • Thalamocortical Connectivity in Healthy Children: Asymmetries and Robust Developmental Changes between Ages 8 and 17 Years
  • Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
  • Qualitative and Quantitative Analysis of MR Imaging Findings in Patients with Middle Cerebral Artery Stroke Implanted with Mesenchymal Stem Cells
  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire