Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleBrain

Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas

V.Z. Miloushev, D.S. Chow and C.G. Filippi
American Journal of Neuroradiology February 2015, 36 (2) 302-308; DOI: https://doi.org/10.3174/ajnr.A4097
V.Z. Miloushev
aFrom the Department of Diagnostic Radiology, Columbia University, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.S. Chow
aFrom the Department of Diagnostic Radiology, Columbia University, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.G. Filippi
aFrom the Department of Diagnostic Radiology, Columbia University, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Hajnal JV,
    2. Doran M,
    3. Hall AS, et al
    . MR imaging of anisotropically restricted diffusion of water in the nervous system. J Comput Assist Tomogr 1991;15:1–18
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Pierpaoli C,
    2. Jezzard P,
    3. Basser PJ, et al
    . Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–48
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Basser PJ,
    2. Pierpaoli C
    . Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209–19
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Higano S,
    2. Yun X,
    3. Kumabe T, et al
    . Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 2006;241:839–46
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Murakami R,
    2. Hirai T,
    3. Kitajima M, et al
    . Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (ADC) value for differentiation from high-grade gliomas. Acta Radiol 2008;49:462–67
    FREE Full Text
  6. 6.↵
    1. Yamasaki F,
    2. Kurisu K,
    3. Aoki T, et al
    . Advantages of high b-value diffusion-weighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment. Eur J Radiol 2012;81:2805–10
    CrossRefPubMed
  7. 7.↵
    1. Saksena S,
    2. Jain R,
    3. Narang J, et al
    . Predicting survival in glioblastomas using diffusion tensor imaging metrics. J Magn Reson Imaging 2010;32:788–95
    CrossRefPubMed
  8. 8.↵
    1. Zulfiqar M,
    2. Yousem DM,
    3. Lai H
    . ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor? A meta-analysis. AJR Am J Roentgenol 2013;200:624–29
    CrossRefPubMed
  9. 9.↵
    1. Chen L,
    2. Liu M,
    3. Bao J, et al
    . The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS ONE 2013;8:e79008
    CrossRefPubMed
  10. 10.↵
    1. Lu S,
    2. Ahn D,
    3. Johnson G, et al
    . Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 2004;232:221–28
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Beppu T,
    2. Inoue T,
    3. Shibata Y, et al
    . Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol 2005;63:56–61, discussion 61
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Morita K,
    2. Matsuzawa H,
    3. Fujii Y, et al
    . Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. J Neurosurg 2005;102:336–41
    CrossRefPubMed
  13. 13.↵
    1. Stadlbauer A,
    2. Ganslandt O,
    3. Buslei R, et al
    . Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 2006;240:803–10
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Lee HY,
    2. Na DG,
    3. Song IC, et al
    . Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity. J Comput Assist Tomogr 2008;32:298–303
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Ferda J,
    2. Kastner J,
    3. Mukensnabl P, et al
    . Diffusion tensor magnetic resonance imaging of glial brain tumors. Eur J Radiol 2010;74:428–36
    CrossRefPubMed
  16. 16.↵
    1. Kinoshita M,
    2. Goto T,
    3. Okita Y, et al
    . Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema. J Neurooncol 2010;96:409–15
    CrossRefPubMed
  17. 17.↵
    1. Deng Z,
    2. Yan Y,
    3. Zhong D, et al
    . Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J Clin Neurosci 2010;17:1530–36
    CrossRefPubMed
  18. 18.↵
    1. Jakab A,
    2. Molnar P,
    3. Emri M, et al
    . Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps. Neuroradiology 2011;53:483–91
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. White ML,
    2. Zhang Y,
    3. Yu F, et al
    . Diffusion tensor MR imaging of cerebral gliomas: evaluating fractional anisotropy characteristics. AJNR Am J Neuroradiol 2011;32:374–81
    Abstract/FREE Full Text
  20. 20.↵
    1. Zikou AK,
    2. Alexiou GA,
    3. Kosta P, et al
    . Diffusion tensor and dynamic susceptibility contrast MRI in glioblastoma. Clin Neurol Neurosurg 2012;114:607–12
    CrossRefPubMed
  21. 21.↵
    1. Sternberg EJ,
    2. Lipton ML,
    3. Burns J
    . Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary and metastatic brain tumors. AJNR Am J Neuroradiol 2014;35:439–44
    Abstract/FREE Full Text
  22. 22.↵
    1. Stadlbauer A,
    2. Nimsky C,
    3. Buslei R, et al
    . Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 2007;34:949–56
    CrossRefPubMed
  23. 23.↵
    1. Kang Y,
    2. Choi SH,
    3. Kim YJ, et al
    . Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology 2011;261:882–90
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Chen Y,
    2. Shi Y,
    3. Song Z
    . Differences in the architecture of low-grade and high-grade gliomas evaluated using fiber density index and fractional anisotropy. J Clin Neurosci 2010;17:824–29
    CrossRefPubMed
  25. 25.↵
    1. Nilsson D,
    2. Rutka JT,
    3. Snead OC 3rd., et al
    . Preserved structural integrity of white matter adjacent to low-grade tumors. Childs Nerv Syst 2008:24:313–20
    CrossRefPubMed
  26. 26.↵
    1. Kingsley PB
    . Introduction to diffusion tensor imaging mathematics. Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A 2006;28A:123–54
  27. 27.↵
    R Development Core Team. R: A Language and Environment for Statistical Computing. Version 3.0.1. Vienna, Austria: R Foundation for Statistical Computing; 2013
  28. 28.↵
    1. Viechtbauer W
    . Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 2010;36:1–48
  29. 29.↵
    1. Chinn S
    . A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat Med 2000;19:3127–31
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Egger M,
    2. Davey Smith G,
    3. Schneider M, et al
    . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34
    Abstract/FREE Full Text
  31. 31.↵
    1. Higgins JP,
    2. Thompson SG
    . Controlling the risk of spurious findings from meta-regression. Stat Med 2004;23:1663–82
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Robin X,
    2. Turck N,
    3. Hainard A, et al
    . pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77
    CrossRefPubMed
  33. 33.↵
    1. Wesseling P,
    2. Vandersteenhoven J,
    3. Downey B, et al
    . Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. Acta Neuropathol 1993;85:508–14
    PubMedWeb of Science
  34. 34.↵
    1. Vargová L,
    2. Homola A,
    3. Zamecnik J, et al
    . Diffusion parameters of the extracellular space in human gliomas. Glia 2003;42:77–88
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Swanson KR,
    2. Alvord EC Jr.,
    3. Murray JD
    . A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 2000;33:317–29
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Raab P,
    2. Hattingen E,
    3. Franz K, et al
    . Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 2010;254:876–81
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Van Cauter S,
    2. Veraart J,
    3. Sijbers J, et al
    . Gliomas: diffusion kurtosis MR imaging in grading. Radiology 2012;263:492–501
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Paldino MJ,
    2. Barboriak D,
    3. Desjardins A, et al
    . Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme. J Magn Reson Imaging 2009;29:1199–205
    CrossRefPubMed
  39. 39.↵
    1. Chow DS,
    2. Qi J,
    3. Guo X, et al
    . Semiautomated volumetric measurement on postcontrast MR imaging for analysis of recurrent and residual disease in glioblastoma multiforme. AJNR Am J Neuroradiol 2014;35:498–503
    Abstract/FREE Full Text
  40. 40.↵
    1. Phillips HS,
    2. Kharbanda S,
    3. Chen R, et al
    . Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9:157–73
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Zinn PO,
    2. Majadan B,
    3. Sathyan P, et al
    . Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 2011;6:e25451
    CrossRefPubMed
  42. 42.↵
    1. Verhaak RG,
    2. Hoadley KA,
    3. Purdom E, et al
    . An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell 2010;17:98
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Moon WJ,
    2. Choi JW,
    3. Roh HG, et al
    . Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiol 2012;54:555–63
    CrossRefPubMed
  44. 44.↵
    1. Romano A,
    2. Calabria LF,
    3. Tavanti F, et al
    . Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status. Eur Radiol 2013;23:513–20
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (2)
American Journal of Neuroradiology
Vol. 36, Issue 2
1 Feb 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
V.Z. Miloushev, D.S. Chow, C.G. Filippi
Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas
American Journal of Neuroradiology Feb 2015, 36 (2) 302-308; DOI: 10.3174/ajnr.A4097

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas
V.Z. Miloushev, D.S. Chow, C.G. Filippi
American Journal of Neuroradiology Feb 2015, 36 (2) 302-308; DOI: 10.3174/ajnr.A4097
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Imaging-Based Algorithm for the Local Grading of Glioma
  • A simple model for glioma grading based on texture analysis applied to conventional brain MRI
  • Crossref (31)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • MRI biomarkers in neuro-oncology
    Marion Smits
    Nature Reviews Neurology 2021 17 8
  • MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives
    Domenico Aquino, Andrea Gioppo, Gaetano Finocchiaro, Maria Grazia Bruzzone, Valeria Cuccarini
    Journal of Immunology Research 2017 2017
  • Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis
    S. C. Thust, S. Hassanein, S. Bisdas, J. H. Rees, H. Hyare, J. A. Maynard, S. Brandner, C. Tur, H. R. Jäger, T. A. Yousry, L. Mancini
    European Radiology 2018 28 9
  • Clinical Management of Diffuse Low-Grade Gliomas
    Giuseppe Lombardi, Valeria Barresi, Antonella Castellano, Emeline Tabouret, Francesco Pasqualetti, Alessandro Salvalaggio, Giulia Cerretti, Mario Caccese, Marta Padovan, Vittorina Zagonel, Tamara Ius
    Cancers 2020 12 10
  • Advanced Imaging Techniques for Radiotherapy Planning of Gliomas
    Antonella Castellano, Michele Bailo, Francesco Cicone, Luciano Carideo, Natale Quartuccio, Pietro Mortini, Andrea Falini, Giuseppe Lucio Cascini, Giuseppe Minniti
    Cancers 2021 13 5
  • Alterations of white matter integrity associated with cognitive deficits in patients with glioma
    Dongming Liu, Yong Liu, Xinhua Hu, Guanjie Hu, Kun Yang, Chaoyong Xiao, Jun Hu, Zonghong Li, Yuanjie Zou, Jiu Chen, Hongyi Liu
    Brain and Behavior 2020 10 7
  • Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status
    Céline De Looze, Alan Beausang, Jane Cryan, Teresa Loftus, Patrick G. Buckley, Michael Farrell, Seamus Looby, Richard Reilly, Francesca Brett, Hugh Kearney
    Journal of Neuro-Oncology 2018 139 2
  • The role of diffusion tensor imaging metrics in the discrimination between cerebellar medulloblastoma and brainstem glioma
    Nguyen Minh Duc
    Pediatric Blood & Cancer 2020 67 9
  • Progress in neuro-imaging of brain tumors
    Antonella Castellano, Andrea Falini
    Current Opinion in Oncology 2016 28 6
  • Extracting diffusion tensor fractional anisotropy and mean diffusivity from 3‐direction DWI scans using deep learning
    Eric Aliotta, Hamidreza Nourzadeh, Sohil H. Patel
    Magnetic Resonance in Medicine 2021 85 2

More in this TOC Section

  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire