Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleHead & Neck
Open Access

Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes

M. Han, E.J. Ha and J.H. Park
American Journal of Neuroradiology March 2021, 42 (3) 559-565; DOI: https://doi.org/10.3174/ajnr.A6922
M. Han
aDepartment of Radiology, Ajou University School of Medicine, Suwon, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Han
E.J. Ha
aDepartment of Radiology, Ajou University School of Medicine, Suwon, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.J. Ha
J.H. Park
aDepartment of Radiology, Ajou University School of Medicine, Suwon, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.H. Park
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Park SH,
    2. Kressel HY
    . Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci 2018;33:e152 doi:10.3346/jkms.2018.33.e152 pmid:29805337
    CrossRefPubMed
  2. 2.↵
    1. Park SH,
    2. Han K
    . Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–09 doi:10.1148/radiol.2017171920 pmid:29309734
    CrossRefPubMed
  3. 3.↵
    1. Park SH
    . Regulatory approval versus clinical validation of artificial intelligence diagnostic tools. Radiology 2018;288:910–11 doi:10.1148/radiol.2018181310 pmid:30040041
    CrossRefPubMed
  4. 4.↵
    1. Li X,
    2. Zhang S,
    3. Zhang Q, et al
    . Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 2019;20:193–201 doi:10.1016/S1470-2045(18)30762-9 pmid:30583848
    CrossRefPubMed
  5. 5.↵
    1. Chi J,
    2. Walia E,
    3. Babyn P, et al
    . Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J Digit Imaging 2017;30:477–86 doi:10.1007/s10278-017-9997-y pmid:28695342
    CrossRefPubMed
  6. 6.↵
    1. Buda M,
    2. Wildman-Tobriner B,
    3. Castor K, et al
    . Deep learning-based segmentation of nodules in thyroid ultrasound: improving performance by utilizing markers present in the images. Ultrasound Med Biol 2020;46:415–21 doi:10.1016/j.ultrasmedbio.2019.10.003 pmid:31699547
    CrossRefPubMed
  7. 7.↵
    1. Song J,
    2. Chai YJ,
    3. Masuoka H, et al
    . Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. Medicine (Baltimore) 2019;98:e15133 doi:10.1097/MD.0000000000015133 pmid:30985680
    CrossRefPubMed
  8. 8.↵
    1. Kim DW,
    2. Jang HY,
    3. Kim KW, et al
    . Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405–10 doi:10.3348/kjr.2019.0025 pmid:30799571
    CrossRefPubMed
  9. 9.↵
    1. Choi YJ,
    2. Baek JH,
    3. Park HS, et al
    . A computer-aided diagnostic system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment. Thyroid 2017;27:546–52 doi:10.1089/thy.2016.0372 pmid:28071987
    CrossRefPubMed
  10. 10.↵
    1. Yoo YJ,
    2. Ha EJ,
    3. Cho YJ, et al
    . A computer-aided diagnostic system for thyroid nodules on ultrasonography: initial clinical experience. Korean J Radiol 2018;28:1532–37 doi:10.3348/kjr.2018.19.4.665 pmid:29962872
    CrossRefPubMed
  11. 11.↵
    1. Jeong EY,
    2. Kim HL,
    3. Ha EJ, et al
    . Computer-aided diagnostic system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators. Eur Radiol 2019;29:1978–85 doi:10.1007/s00330-018-5772-9 pmid:30350161
    CrossRefPubMed
  12. 12.↵
    1. Park VY,
    2. Han K,
    3. Seong YK, et al
    . Diagnosis of thyroid nodules: performance of a deep learning convolutional neural network model vs radiologists. Sci Rep 2019;9:17843 doi:10.1038/s41598-019-54434-1 pmid:31780753
    CrossRefPubMed
  13. 13.↵
    1. Haugen BR
    . 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: what is new and what has changed? Cancer 2017;123:372–81 doi:10.1002/cncr.30360 pmid:27741354
    CrossRefPubMed
  14. 14.↵
    1. Shin JH,
    2. Baek JH,
    3. Chung J, et al
    ; Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol 2016;17:370–95 doi:10.3348/kjr.2016.17.3.370 pmid:27134526
    CrossRefPubMed
  15. 15.↵
    1. Ha EJ,
    2. Baek JH,
    3. Na DG
    . Risk stratification of thyroid nodules on ultrasonography: current status and perspectives. Thyroid 2017;27:1463–68 doi:10.1089/thy.2016.0654 pmid:28946821
    CrossRefPubMed
  16. 16.↵
    1. Kim HL,
    2. Ha EJ,
    3. Han M
    . Real-world performance of computer-aided diagnostic system for thyroid nodules using ultrasonography. Ultrasound Med Biol 2019;45:2672–78 doi:10.1016/j.ultrasmedbio.2019.05.032 pmid:31262524
    CrossRefPubMed
  17. 17.↵
    1. Persichetti A,
    2. Stasio E,
    3. Coccaro C, et al
    . Inter- and intraobserver agreement in the assessment of thyroid nodule ultrasound features and classification systems: a blinded multicenter study. Thyroid 2020;30:237–42 doi:10.1089/thy.2019.0360 pmid:31952456
    CrossRefPubMed
  18. 18.↵
    1. Ha EJ,
    2. Baek JH,
    3. Na DG
    . Deep convolutional neural network models for the diagnosis of thyroid cancer. Lancet Oncol 2019;20:e130 doi:10.1016/S1470-2045(19)30086-5 pmid:30842054
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (3)
American Journal of Neuroradiology
Vol. 42, Issue 3
1 Mar 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Han, E.J. Ha, J.H. Park
Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes
American Journal of Neuroradiology Mar 2021, 42 (3) 559-565; DOI: 10.3174/ajnr.A6922

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes
M. Han, E.J. Ha, J.H. Park
American Journal of Neuroradiology Mar 2021, 42 (3) 559-565; DOI: 10.3174/ajnr.A6922
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (30)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?
    Salvatore Sorrenti, Vincenzo Dolcetti, Maija Radzina, Maria Irene Bellini, Fabrizio Frezza, Khushboo Munir, Giorgio Grani, Cosimo Durante, Vito D’Andrea, Emanuele David, Pietro Giorgio Calò, Eleonora Lori, Vito Cantisani
    Cancers 2022 14 14
  • AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future Directions
    Yassine Habchi, Yassine Himeur, Hamza Kheddar, Abdelkrim Boukabou, Shadi Atalla, Ammar Chouchane, Abdelmalik Ouamane, Wathiq Mansoor
    Systems 2023 11 10
  • Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations
    Ying Zou, Yan Shi, Fang Sun, Jihua Liu, Yu Guo, Huanlei Zhang, Xiudi Lu, Yan Gong, Shuang Xia
    Computer Methods and Programs in Biomedicine 2022 225
  • Artificial Intelligence (AI) Tools for Thyroid Nodules on Ultrasound, From the AJR Special Series on AI Applications
    Benjamin Wildman-Tobriner, Elmira Taghi-Zadeh, Maciej A. Mazurowski
    American Journal of Roentgenology 2022 219 4
  • Artificial intelligence in thyroid ultrasound
    Chun-Li Cao, Qiao-Li Li, Jin Tong, Li-Nan Shi, Wen-Xiao Li, Ya Xu, Jing Cheng, Ting-Ting Du, Jun Li, Xin-Wu Cui
    Frontiers in Oncology 2023 13
  • Radiomic Detection of Malignancy within Thyroid Nodules Using Ultrasonography—A Systematic Review and Meta-Analysis
    Eoin F. Cleere, Matthew G. Davey, Shane O’Neill, Mel Corbett, John P O’Donnell, Sean Hacking, Ivan J. Keogh, Aoife J. Lowery, Michael J. Kerin
    Diagnostics 2022 12 4
  • Accuracy of Ultrasound Diagnosis of Thyroid Nodules Based on Artificial Intelligence-Assisted Diagnostic Technology: A Systematic Review and Meta-Analysis
    Yu Xue, Ying Zhou, Tingrui Wang, Huijuan Chen, Lingling Wu, Huayun Ling, Hong Wang, Lijuan Qiu, Dongqing Ye, Bin Wang, Claudio Casella
    International Journal of Endocrinology 2022 2022
  • Clinical value of artificial intelligence in thyroid ultrasound: a prospective study from the real world
    Yingying Li, Yihao Liu, Jing Xiao, Lin Yan, Zhen Yang, Xinyang Li, Mingbo Zhang, Yukun Luo
    European Radiology 2023 33 7
  • Identification of benign and malignant thyroid nodules based on dynamic AI ultrasound intelligent auxiliary diagnosis system
    Bing Wang, Zheng Wan, Chen Li, Mingbo Zhang, YiLei Shi, Xin Miao, Yanbing Jian, Yukun Luo, Jing Yao, Wen Tian
    Frontiers in Endocrinology 2022 13
  • Diagnostic Performance of Various Ultrasound Risk Stratification Systems for Benign and Malignant Thyroid Nodules: A Meta-Analysis
    Ji-Sun Kim, Byung Guk Kim, Gulnaz Stybayeva, Se Hwan Hwang
    Cancers 2023 15 2

More in this TOC Section

  • Chondrosarcoma vs Synovial Chondromatosis: Imaging
  • NI-RADS for HEAD&NECK Cancer Recurrence
  • WHO Classification Update: Nasal&Skull Base Tumors
Show more HEAD & NECK

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire