Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticlePediatric Neuroimaging

Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors

Arastoo Vossough, Nastaran Khalili, Ariana M. Familiar, Deep Gandhi, Karthik Viswanathan, Wenxin Tu, Debanjan Haldar, Sina Bagheri, Hannah Anderson, Shuvanjan Haldar, Phillip B. Storm, Adam Resnick, Jeffrey B. Ware, Ali Nabavizadeh and Anahita Fathi Kazerooni
American Journal of Neuroradiology August 2024, 45 (8) 1081-1089; DOI: https://doi.org/10.3174/ajnr.A8293
Arastoo Vossough
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Radiology (A.V., S.B., J.B.W., A.N.), University of Pennsylvania, Philadelphia, Pennsylvania
cDepartment of Radiology (A.V.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arastoo Vossough
Nastaran Khalili
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ariana M. Familiar
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ariana M. Familiar
Deep Gandhi
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karthik Viswanathan
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenxin Tu
dCollege of Arts and Sciences (W.T.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wenxin Tu
Debanjan Haldar
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sina Bagheri
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Radiology (A.V., S.B., J.B.W., A.N.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sina Bagheri
Hannah Anderson
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shuvanjan Haldar
eSchool of Engineering (S.H.), Rutgers University, New Brunswick, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Phillip B. Storm
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
fDepartment of Neurosurgery (P.B.S., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam Resnick
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey B. Ware
bDepartment of Radiology (A.V., S.B., J.B.W., A.N.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeffrey B. Ware
Ali Nabavizadeh
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Radiology (A.V., S.B., J.B.W., A.N.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ali Nabavizadeh
Anahita Fathi Kazerooni
aFrom the Center for Data Driven Discovery in Biomedicine (A.V., N.K., A.M.F., D.G., K.V., D.H., S.B., H.A., P.B.S., A.R., A.N., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
fDepartment of Neurosurgery (P.B.S., A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
gCenter for AI & Data Science for Integrated Diagnostics (A.F.K.), University of Pennsylvania, Philadelphia, Pennsylvania
hCenter for Biomedical Image Computing and Analytics (A.F.K.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anahita Fathi Kazerooni
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Abstract

BACKGROUND AND PURPOSE: Tumor segmentation is essential in surgical and treatment planning and response assessment and monitoring in pediatric brain tumors, the leading cause of cancer-related death among children. However, manual segmentation is time-consuming and has high interoperator variability, underscoring the need for more efficient methods. After training, we compared 2 deep-learning-based 3D segmentation models, DeepMedic and nnU-Net, with pediatric-specific multi-institutional brain tumor data based on multiparametric MR images.

MATERIALS AND METHODS: Multiparametric preoperative MR imaging scans of 339 pediatric patients (n = 293 internal and n = 46 external cohorts) with a variety of tumor subtypes were preprocessed and manually segmented into 4 tumor subregions, ie, enhancing tumor, nonenhancing tumor, cystic components, and peritumoral edema. After training, performances of the 2 models on internal and external test sets were evaluated with reference to ground truth manual segmentations. Additionally, concordance was assessed by comparing the volume of the subregions as a percentage of the whole tumor between model predictions and ground truth segmentations using the Pearson or Spearman correlation coefficients and the Bland-Altman method.

RESULTS: The mean Dice score for nnU-Net internal test set was 0.9 (SD, 0.07) (median, 0.94) for whole tumor; 0.77 (SD, 0.29) for enhancing tumor; 0.66 (SD, 0.32) for nonenhancing tumor; 0.71 (SD, 0.33) for cystic components, and 0.71 (SD, 0.40) for peritumoral edema, respectively. For DeepMedic, the mean Dice scores were 0.82 (SD, 0.16) for whole tumor; 0.66 (SD, 0.32) for enhancing tumor; 0.48 (SD, 0.27) for nonenhancing tumor; 0.48 (SD, 0.36) for cystic components, and 0.19 (SD, 0.33) for peritumoral edema, respectively. Dice scores were significantly higher for nnU-Net (P ≤ .01). Correlation coefficients for tumor subregion percentage volumes were higher (0.98 versus 0.91 for enhancing tumor, 0.97 versus 0.75 for nonenhancing tumor, 0.98 versus 0.80 for cystic components, 0.95 versus 0.33 for peritumoral edema in the internal test set). Bland-Altman plots were better for nnU-Net compared with DeepMedic. External validation of the trained nnU-Net model on the multi-institutional Brain Tumor Segmentation Challenge in Pediatrics (BraTS-PEDs) 2023 data set revealed high generalization capability in the segmentation of whole tumor, tumor core (a combination of enhancing tumor, nonenhancing tumor, and cystic components), and enhancing tumor with mean Dice scores of 0.87 (SD, 0.13) (median, 0.91), 0.83 (SD, 0.18) (median, 0.89), and 0.48 (SD, 0.38) (median, 0.58), respectively.

CONCLUSIONS: The pediatric-specific data-trained nnU-Net model is superior to DeepMedic for whole tumor and subregion segmentation of pediatric brain tumors.

ABBREVIATIONS:

AI
artificial intelligence
BraTS
Brain Tumor Segmentation Challenge
CBTN
Children’s Brain Tumor Network
CC
cystic component
CNN
convolutional neural network
DMG/DIPG
diffuse midline glioma/diffuse intrinsic pontine glioma
ED
edema
ET
enhancing tumor
NET
nonenhancing tumor
TC
tumor core
WT
whole tumor
  • © 2024 by American Journal of Neuroradiology
View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (8)
American Journal of Neuroradiology
Vol. 45, Issue 8
1 Aug 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Arastoo Vossough, Nastaran Khalili, Ariana M. Familiar, Deep Gandhi, Karthik Viswanathan, Wenxin Tu, Debanjan Haldar, Sina Bagheri, Hannah Anderson, Shuvanjan Haldar, Phillip B. Storm, Adam Resnick, Jeffrey B. Ware, Ali Nabavizadeh, Anahita Fathi Kazerooni
Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors
American Journal of Neuroradiology Aug 2024, 45 (8) 1081-1089; DOI: 10.3174/ajnr.A8293

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
nnU-Net vs DeepMedic for PEDS BT Segmentation
Arastoo Vossough, Nastaran Khalili, Ariana M. Familiar, Deep Gandhi, Karthik Viswanathan, Wenxin Tu, Debanjan Haldar, Sina Bagheri, Hannah Anderson, Shuvanjan Haldar, Phillip B. Storm, Adam Resnick, Jeffrey B. Ware, Ali Nabavizadeh, Anahita Fathi Kazerooni
American Journal of Neuroradiology Aug 2024, 45 (8) 1081-1089; DOI: 10.3174/ajnr.A8293
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Empowering Data Sharing in Neuroscience: A Deep Learning Deidentification Method for Pediatric Brain MRIs
  • Crossref (7)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation
    Ariana M Familiar, Anahita Fathi Kazerooni, Arastoo Vossough, Jeffrey B Ware, Sina Bagheri, Nastaran Khalili, Hannah Anderson, Debanjan Haldar, Phillip B Storm, Adam C Resnick, Benjamin H Kann, Mariam Aboian, Cassie Kline, Michael Weller, Raymond Y Huang, Susan M Chang, Jason R Fangusaro, Lindsey M Hoffman, Sabine Mueller, Michael Prados, Ali Nabavizadeh
    Neuro-Oncology 2024 26 9
  • Artificial Intelligence for Neuroimaging in Pediatric Cancer
    Josue Luiz Dalboni da Rocha, Jesyin Lai, Pankaj Pandey, Phyu Sin M. Myat, Zachary Loschinskey, Asim K. Bag, Ranganatha Sitaram
    Cancers 2025 17 4
  • Automated pediatric brain tumor imaging assessment tool from CBTN: Enhancing suprasellar region inclusion and managing limited data with deep learning
    Deep B Gandhi, Nastaran Khalili, Ariana M Familiar, Anurag Gottipati, Neda Khalili, Wenxin Tu, Shuvanjan Haldar, Hannah Anderson, Karthik Viswanathan, Phillip B Storm, Jeffrey B Ware, Adam Resnick, Arastoo Vossough, Ali Nabavizadeh, Anahita Fathi Kazerooni
    Neuro-Oncology Advances 2024 6 1
  • Empowering Data Sharing in Neuroscience: A Deep Learning Deidentification Method for Pediatric Brain MRIs
    Ariana M. Familiar, Neda Khalili, Nastaran Khalili, Cassidy Schuman, Evan Grove, Karthik Viswanathan, Jakob Seidlitz, Aaron Alexander-Bloch, Anna Zapaishchykova, Benjamin H. Kann, Arastoo Vossough, Phillip B. Storm, Adam C. Resnick, Anahita Fathi Kazerooni, Ali Nabavizadeh
    American Journal of Neuroradiology 2025 46 5
  • Exploring neonatal brain tumors: a narrative review about epidemiology, classification, and management
    Mira Al Shoufy, Gabi Kafa, Bana Ibrahim, Hazem Ibrahem, Aya Dakour, Ali Haidar, Zuheir Alshehabi
    Annals of Medicine & Surgery 2025 87 5
  • From black box AI to XAI in neuro-oncology: a survey on MRI-based tumor detection
    Asmita, Praveen Mittal
    Discover Artificial Intelligence 2025 5 1
  • The Evolving Landscape of Radiomics in Gliomas: Insights into Diagnosis, Prognosis, and Research Trends
    Mehek Dedhia, Isabelle M. Germano
    Cancers 2025 17 9

More in this TOC Section

Pediatric Neuroimaging

  • Neuroimaging Delineation and Progression of SLSMD
  • New CNS Embryonal Tumor Insights via MRI Analysis
  • Susceptibility Mapping in Newborn Brain Development
Show more Pediatric Neuroimaging

Artificial Intelligence

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
  • DL ASPECTS & Reader Accuracy/Interpretation Time
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire