Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleUltra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Diffusion- and Tractography-Based Characterization of Tissue Damage Within and Surrounding Paramagnetic Rim Lesions in Multiple Sclerosis

Maryam Mohebbi, Jack A. Reeves, Dejan Jakimovski, Alexander Bartnik, Niels Bergsland, Fahad Salman, Ferdinand Schweser, Bianca Weinstock-Guttman, Robert Zivadinov and Michael G. Dwyer
American Journal of Neuroradiology March 2025, 46 (3) 611-619; DOI: https://doi.org/10.3174/ajnr.A8524
Maryam Mohebbi
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jack A. Reeves
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dejan Jakimovski
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dejan Jakimovski
Alexander Bartnik
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Niels Bergsland
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Niels Bergsland
Fahad Salman
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ferdinand Schweser
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
bCenter for Biomedical Imaging at the Clinical Translational Science Institute (F.Schweser, R.Z.), University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ferdinand Schweser
Bianca Weinstock-Guttman
cJacobs Neurological Institute (B.W.-G.), Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bianca Weinstock-Guttman
Robert Zivadinov
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
bCenter for Biomedical Imaging at the Clinical Translational Science Institute (F.Schweser, R.Z.), University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Robert Zivadinov
Michael G. Dwyer
aFrom the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael G. Dwyer
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Graphical Abstract

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

BACKGROUND AND PURPOSE: Paramagnetic rim lesions (PRLs) are an imaging biomarker of chronic inflammation in MS that are associated with more aggressive disease. However, the precise tissue characteristics and extent of their damage, particularly with regard to connected axonal tracts, are incompletely understood. Quantitative diffusion tissue measurements and fiber tractography can provide a more complete picture of these phenomena.

MATERIALS AND METHODS: One hundred fifteen people with MS were enrolled in this study. Quantitative susceptibility mapping and DWI were acquired on a 3T MRI scanner. PRLs were identified in 49 (43%) subjects. Diffusion tractography was then used to identify nearby PRL-connected versus non-PRL connected tracts and PRL-connected versus nonconnected surrounding tracts. DWI metrics, including fractional anisotropy (FA), quantitative anisotropy (QA), mean diffusivity, axial diffusivity, radial diffusivity, isotropy, and restricted diffusion imaging, were compared between these tracts and within PRLs and non-PRL lesions themselves.

RESULTS: Tissue within PRLs had significantly lower FA than tissue within non-PRL T2 lesions (P = .04). Tracts connected to PRLs exhibited significantly lower FA (P < .001), higher restricted diffusion imaging (P = .02, and higher Iso values (P = .007) than tracts connected to non-PRL T2 lesions. Only QA was different between tracts connected to PRLs and nonconnected surrounding tracts (P = .003).

CONCLUSIONS: PRLs are more destructive both within themselves and to surrounding tissue. This damage appears more spatially than axonally mediated.

ABBREVIATIONS:

AD
axial diffusivity
CAL
chronic active lesion
DKI
diffusional kurtosis imaging
FA
fractional anisotropy
FDR
false discovery rate
FLIP
flip angle
FSL
FMRIB’s Software Library
GQI
generalized q-sampling imaging
Iso
isotropy
LV
lesion volume
MD
mean diffusivity
PRL
paramagnetic rim lesion
pwMS
people with MS
QA
quantitative anisotropy
QSM
quantitative susceptibility mapping
RD
radial diffusivity
RDI
restricted diffusion imaging
RRMS
relapsing-remitting MS
SDF
spin distribution function
T1w
T1-weighted
  • © 2025 by American Journal of Neuroradiology
View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (3)
American Journal of Neuroradiology
Vol. 46, Issue 3
1 Mar 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diffusion- and Tractography-Based Characterization of Tissue Damage Within and Surrounding Paramagnetic Rim Lesions in Multiple Sclerosis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Maryam Mohebbi, Jack A. Reeves, Dejan Jakimovski, Alexander Bartnik, Niels Bergsland, Fahad Salman, Ferdinand Schweser, Bianca Weinstock-Guttman, Robert Zivadinov, Michael G. Dwyer
Diffusion- and Tractography-Based Characterization of Tissue Damage Within and Surrounding Paramagnetic Rim Lesions in Multiple Sclerosis
American Journal of Neuroradiology Mar 2025, 46 (3) 611-619; DOI: 10.3174/ajnr.A8524

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Tissue Damage Characterization in MS Using DWI
Maryam Mohebbi, Jack A. Reeves, Dejan Jakimovski, Alexander Bartnik, Niels Bergsland, Fahad Salman, Ferdinand Schweser, Bianca Weinstock-Guttman, Robert Zivadinov, Michael G. Dwyer
American Journal of Neuroradiology Mar 2025, 46 (3) 611-619; DOI: 10.3174/ajnr.A8524
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Trigeminal nerve root assessment using MPF mapping
  • Automated vs Manual Central Vein Sign in MS
Show more Ultra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire