Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticlePediatrics

Quantitative Analysis of Punctate White Matter Lesions in Neonates Using Quantitative Susceptibility Mapping and R2* Relaxation

Y. Zhang, A. Rauscher, C. Kames and A.M. Weber
American Journal of Neuroradiology July 2019, 40 (7) 1221-1226; DOI: https://doi.org/10.3174/ajnr.A6114
Y. Zhang
aFrom the Department of Radiology (Y.Z.)
bMinistry of Education Key Laboratory of Child Development and Disorders (Y.Z.), Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
cKey Laboratory of Pediatrics in Chongqing (Y.Z.), Chongqing, P.R. China
dChongqing International Science and Technology Cooperation Center for Child Development and Disorders (Y.Z.), Chongqing, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zhang
A. Rauscher
eDivision of Neurology (A.R., A.M.W.)
fDepartment of Pediatrics, University of British Columbia MRI Research Centre (A.R., A.M.W., C.K.)
gDepartments of Radiology, (A.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Rauscher
C. Kames
fDepartment of Pediatrics, University of British Columbia MRI Research Centre (A.R., A.M.W., C.K.)
hPhysics and Astronomy (C.K.), University of British Columbia, Vancouver, British Columbia, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Kames
A.M. Weber
eDivision of Neurology (A.R., A.M.W.)
fDepartment of Pediatrics, University of British Columbia MRI Research Centre (A.R., A.M.W., C.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.M. Weber
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Horbar JD,
    2. Badger GJ,
    3. Carpenter JH, et al
    ; Members of the Vermont Oxford Network. Trends in mortality and morbidity for very low birth weight infants, 1991–1999. Pediatrics 2002;110(1 Pt 1):143–51 doi:10.1542/peds.110.1.143 pmid:12093960
    Abstract/FREE Full Text
  2. 2.↵
    1. van den Hout BM,
    2. de Vries LS,
    3. Meiners LC, et al
    . Visual perceptual impairment in children at 5 years of age with perinatal haemorrhagic or ischaemic brain damage in relation to cerebral magnetic resonance imaging. Brain Dev 2004;26:251–61 doi:10.1016/S0387-7604(03)00163-3 pmid:15130692
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Grunau RE,
    2. Whitfield MF,
    3. Davis C
    . Pattern of learning disabilities in children with extremely low birth weight and broadly average intelligence. Arch Pediatr Adolesc Med 2002;156:615–20 doi:10.1001/archpedi.156.6.615 pmid:12038896
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Hamrick SE,
    2. Miller SP,
    3. Leonard C, et al
    . Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 2004;145:593–99 doi:10.1016/j.jpeds.2004.05.042 pmid:15520756
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Maalouf EF,
    2. Duggan PJ,
    3. Counsell SJ, et al
    . Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001;107:719–27 doi:10.1542/peds.107.4.719 pmid:11335750
    Abstract/FREE Full Text
  6. 6.↵
    1. Inder TE,
    2. Anderson NJ,
    3. Spencer C, et al
    . White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003;24:805–09 pmid:12748075
    Abstract/FREE Full Text
  7. 7.↵
    1. Inder TE,
    2. Wells SJ,
    3. Mogridge NB, et al
    . Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143:171–79 doi:10.1067/S0022-3476(03)00357-3 pmid:12970628
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Miller SP,
    2. Cozzio CC,
    3. Goldstein RB, et al
    . Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol 2003;24:1661–69 pmid:13679289
    Abstract/FREE Full Text
  9. 9.↵
    1. Debillon T,
    2. N′Guyen S,
    3. Muet A, et al
    . Limitations of ultrasonography for diagnosing white matter damage in preterm infants. Arch Dis Child Fetal Neonatal Ed 2003;88:F275–79 doi:10.1136/fn.88.4.F275 pmid:12819157
    Abstract/FREE Full Text
  10. 10.↵
    1. Schouman-Claeys E,
    2. Henry-Feugeas MC,
    3. Roset F, et al
    . Periventricular leukomalacia: correlation between MR imaging and autopsy findings during the first 2 months of life. Radiology 1993;189:59–64 doi:10.1148/radiology.189.1.8372220 pmid:8372220
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Riddle A,
    2. Dean J,
    3. Buser JR, et al
    . Histopathological correlates of magnetic resonance imaging-defined chronic perinatal white matter injury. Ann Neurol 2011;70:493–507 doi:10.1002/ana.22501 pmid:21796666
    CrossRefPubMed
  12. 12.↵
    1. Jeon TY,
    2. Kim JH,
    3. Yoo SY, et al
    . Neurodevelopmental outcomes in preterm infants: comparison of infants with and without diffuse excessive high signal intensity on MR images at near-term-equivalent age. Radiology 2012;263:518–26 doi:10.1148/radiol.12111615 pmid:22403166
    CrossRefPubMed
  13. 13.↵
    1. Miller SP,
    2. Ferriero DM,
    3. Leonard C, et al
    . Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 2005;147:609–16 doi:10.1016/j.jpeds.2005.06.033 pmid:16291350
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Dyet LE,
    2. Kennea N,
    3. Counsell SJ, et al
    . Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006;118:536–48 doi:10.1542/peds.2005-1866 pmid:16882805
    Abstract/FREE Full Text
  15. 15.↵
    1. Cornette LG,
    2. Tanner SF,
    3. Ramenghi LA, et al
    . Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal Ed 2002;86:F171–77 doi:10.1136/fn.86.3.F171 pmid:11978747
    Abstract/FREE Full Text
  16. 16.↵
    1. Keeney SE,
    2. Adcock EW,
    3. McArdle CB
    . Prospective observations of 100 high-risk neonates by high-field (1.5 Tesla) magnetic resonance imaging of the central nervous system, II: lesions associated with hypoxic-ischemic encephalopathy. Pediatrics 1991;87:431–38 pmid:2011418
    Abstract/FREE Full Text
  17. 17.↵
    1. Baenziger O,
    2. Martin E,
    3. Steinlin M, et al
    . Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology 1993;35:437–42 doi:10.1007/BF00602824 pmid:8377915
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Battin MR,
    2. Maalouf EF,
    3. Counsell SJ, et al
    . Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics 1998;101:957–62 doi:10.1542/peds.101.6.957 pmid:9606219
    Abstract/FREE Full Text
  19. 19.↵
    1. Mercuri E,
    2. Rutherford M,
    3. Cowan F, et al
    . Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics 1999;103:39–46 doi:10.1542/peds.103.1.39 pmid:9917437
    Abstract/FREE Full Text
  20. 20.↵
    1. Ramenghi LA,
    2. Fumagalli M,
    3. Righini A, et al
    . Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 2007;49:161–67 doi:10.1007/s00234-006-0176-y pmid:17119946
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Cheng I,
    2. Miller SP,
    3. Duerden EG, et al
    . Stochastic process for white matter injury detection in preterm neonates. Neuroimage Clin 2015;7:622–30 doi:10.1016/j.nicl.2015.02.015 pmid:25844316
    CrossRefPubMed
  22. 22.↵
    1. Niwa T,
    2. de Vries LS,
    3. Benders MJ, et al
    . Punctate white matter lesions in infants: new insights using susceptibility-weighted imaging. Neuroradiology 2011;53:669–79 doi:10.1007/s00234-011-0872-0 pmid:21553013
    CrossRefPubMed
  23. 23.↵
    1. Gano D,
    2. Andersen SK,
    3. Partridge JC, et al
    . Diminished white matter injury over time in a cohort of premature newborns. J Pediatr 2015;166:39–43 doi:10.1016/j.jpeds.2014.09.009 pmid:25311709
    CrossRefPubMed
  24. 24.↵
    1. Yablonskiy DA,
    2. Haacke EM
    . Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994;32:749–63 doi:10.1002/mrm.1910320610 pmid:7869897
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Deistung A,
    2. Schweser F,
    3. Reichenbach JR
    . Overview of quantitative susceptibility mapping. NMR Biomed 2017;30 doi:10.1002/nbm.3569 pmid:27434134
    CrossRefPubMed
  26. 26.↵
    1. Denk C,
    2. Rauscher A
    . Susceptibility weighted imaging with multiple echoes. J Magn Reson Imaging 2010;31:185–91 doi:10.1002/jmri.21995 pmid:20027586
    CrossRefPubMed
  27. 27.↵
    1. Schofield MA,
    2. Zhu Y
    . Fast phase unwrapping algorithm for interferometric applications. Opt Lett 2003;28:1194–96 doi:10.1364/OL.28.001194 pmid:12885018
    CrossRefPubMed
  28. 28.↵
    1. Li W,
    2. Wu B,
    3. Liu C
    . Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 2011;55:1645–56 doi:10.1016/j.neuroimage.2010.11.088 pmid:21224002
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Kames C,
    2. Wiggermann V,
    3. Rauscher A
    . Rapid two-step dipole inversion for susceptibility mapping with sparsity priors. Neuroimage 2018;167:276–83 doi:10.1016/j.neuroimage.2017.11.018 pmid:29138089
    CrossRefPubMed
  30. 30.↵
    1. Koo TK,
    2. Li MY
    . A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155–63 doi:10.1016/j.jcm.2016.02.012 pmid:27330520
    CrossRefPubMed
  31. 31.↵
    1. Mori N,
    2. Miki Y,
    3. Kikuta K, et al
    . Microbleeds in moyamoya disease: susceptibility-weighted imaging versus T2*-weighted imaging at 3 Tesla. Invest Radiol 2008;43:574–79 doi:10.1097/RLI.0b013e31817fb432 pmid:18648257
    CrossRefPubMed
  32. 32.↵
    1. Nandigam RN,
    2. Viswanathan A,
    3. Delgado P, et al
    . MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338–43 doi:10.3174/ajnr.A1355 pmid:19001544
    Abstract/FREE Full Text
  33. 33.↵
    1. Wang Y,
    2. Spincemaille P,
    3. Liu Z, et al
    . Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care. J Magn Reson Imaging 2017;46:951–71 doi:10.1002/jmri.25693 pmid:28295954
    CrossRefPubMed
  34. 34.↵
    1. Barbosa JH,
    2. Santos AC,
    3. Tumas V, et al
    . Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2. Magn Reson Imaging 2015;33:559–65 doi:10.1016/j.mri.2015.02.021 pmid:25721997
    CrossRefPubMed
  35. 35.↵
    1. Liu T,
    2. Eskreis-Winkler S,
    3. Schweitzer AD, et al
    . Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology 2013;269:216–23 doi:10.1148/radiol.13121991 pmid:23674786
    CrossRefPubMed
  36. 36.↵
    1. Sharma SD,
    2. Fischer R,
    3. Schoennagel BP, et al
    . MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: comparison with SQUID-based biomagnetic liver susceptometry. Magn Reson Med 2017;78:264–70 doi:10.1002/mrm.26358 pmid:27509836
    CrossRefPubMed
  37. 37.↵
    1. Acosta-Cabronero J,
    2. Betts MJ,
    3. Cardenas-Blanco A, et al
    . In vivo MRI mapping of brain iron deposition across the adult lifespan. J Neurosci 2016;36:364–74 doi:10.1523/JNEUROSCI.1907-15.2016 pmid:26758829
    Abstract/FREE Full Text
  38. 38.↵
    1. Meguro R,
    2. Asano Y,
    3. Odagiri S, et al
    . Cellular and subcellular localizations of nonheme ferric and ferrous iron in the rat brain: a light and electron microscopic study by the perfusion-Perls and -Turnbull methods. Arch Histol Cytol 2008;71:205–22 doi:10.1679/aohc.71.205 pmid:19359804
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (7)
American Journal of Neuroradiology
Vol. 40, Issue 7
1 Jul 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Analysis of Punctate White Matter Lesions in Neonates Using Quantitative Susceptibility Mapping and R2* Relaxation
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Zhang, A. Rauscher, C. Kames, A.M. Weber
Quantitative Analysis of Punctate White Matter Lesions in Neonates Using Quantitative Susceptibility Mapping and R2* Relaxation
American Journal of Neuroradiology Jul 2019, 40 (7) 1221-1226; DOI: 10.3174/ajnr.A6114

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Quantitative Analysis of Punctate White Matter Lesions in Neonates Using Quantitative Susceptibility Mapping and R2* Relaxation
Y. Zhang, A. Rauscher, C. Kames, A.M. Weber
American Journal of Neuroradiology Jul 2019, 40 (7) 1221-1226; DOI: 10.3174/ajnr.A6114
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Quantitative Susceptibility Mapping of Venous Vessels in Neonates with Perinatal Asphyxia
  • Crossref (9)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Quantitative susceptibility mapping shows lower brain iron content in children with autism
    Shilong Tang, Ye Xu, Xianfan Liu, Zhuo Chen, Yu Zhou, Lisha Nie, Ling He
    European Radiology 2021 31 4
  • Paramagnetic Rims in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Quantitative Susceptibility Mapping Study with 3-T MRI
    Jinhee Jang, Yoonho Nam, Yangsean Choi, Na-Young Shin, Jae Young An, Kook-Jin Ahn, Bum-soo Kim, Kwang-Soo Lee, Woojun Kim
    Journal of Clinical Neurology 2020 16 4
  • Effect of GBCA Use on Detection and Diagnostic Performance of the Central Vein Sign: Evaluation Using a 3-T FLAIR* Sequence in Patients With Suspected Multiple Sclerosis
    Lynn Daboul, Carly M. O'Donnell, Quy Cao, Moein Amin, Paulo Rodrigues, John Derbyshire, Christina Azevedo, Amit Bar-Or, Eduardo Caverzasi, Peter Calabresi, Bruce A. C. Cree, Leorah Freeman, Roland G. Henry, Erin E. Longbrake, Kunio Nakamura, Jiwon Oh, Nico Papinutto, Daniel Pelletier, Rohini D. Samudralwar, Suradech Suthiphosuwan, Matthew K. Schindler, Elias S. Sotirchos, Nancy L. Sicotte, Andrew J. Solomon, Russell T. Shinohara, Daniel S. Reich, Daniel Ontaneda, Pascal Sati
    American Journal of Roentgenology 2023 220 1
  • Beyond McDonald: updated perspectives on MRI diagnosis of multiple sclerosis
    Àlex Rovira, Cristina Auger
    Expert Review of Neurotherapeutics 2021 21 8
  • Application of Quantitative Susceptibility Mapping in the Assessment of Iron Content in Brain Regions of Normal Children
    Shilong Tang, Guanping Zhang, Xianfan Liu, Zhuo Chen, Ling He
    Current Medical Imaging Formerly Current Medical Imaging Reviews 2022 18 9
  • Automatic detection of punctate white matter lesions in infants using deep learning of composite images from two cases
    Xuyang Sun, Tetsu Niwa, Takashi Okazaki, Sadanori Kameda, Shuhei Shibukawa, Tomohiko Horie, Toshiki Kazama, Atsushi Uchiyama, Jun Hashimoto
    Scientific Reports 2023 13 1
  • Quantitative Susceptibility Mapping of Venous Vessels in Neonates with Perinatal Asphyxia
    A.M. Weber, Y. Zhang, C. Kames, A. Rauscher
    American Journal of Neuroradiology 2021 42 7
  • The changes of oxygen extraction fraction in different types of lesions in relapsing–remitting multiple sclerosis: A cross-sectional and longitudinal study
    Yan Xie, Shun Zhang, Di Wu, Yihao Yao, Junghun Cho, Jun Lu, Hongquan Zhu, Yi Wang, Yan Zhang, Wenzhen Zhu
    Neurological Sciences 2024 45 8
  • The application of magnetic susceptibility separation for measuring cerebral oxygenation in preterm neonates
    Thomas Gavin Carmichael, Alexander Rauscher, Ruth E. Grunau, Alexander Mark Weber
    Pediatric Research 2025

More in this TOC Section

Pediatrics

  • Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT
  • SyMRI & MR Fingerprinting in Brainstem Myelination
  • Venous Sinus Stenosis in Mucopolysaccharidosis I
Show more Pediatrics

Functional

  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Brain Iron in Niemann-Pick Type C: 7T Study
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire